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1 Introduction

Speech recognition is used in many different aspects of our daily lives, from voice
identification systems to Apple’s Siri. Due to the common use of speech recogni-
tion technologies, programmers and technology users alike should try to understand
speech recognition, how it works, and when it does not work as well.

The purpose of this project is to explore the basic underlying factors and processes
in common speech recognition systems. This paper will describe a program that
constructs and evaluates a simple Hidden Markov Model with Gaussian Mixture
emissions in order to model small sets of common spoken words. As an input, the
program takes raw audio files labeled with the beginning and ending timestamps of
every phoneme and word within, as well as a transcript of the spoken sentences. The
programs then extracts 13 Mel-frequency cepstral coefficients (MFCCs) and creates
the aforementioned model to distinguish between words it was modeled after and
other words. We discuss four different tasks used to evaluate the models’ varying ef-
fectivnesses in different situations, and also present findings on the effect of adjusting
the number of Gaussian Mixture emissions used in the model on its performance.

2 Methods

The speech recognition process in this project was primarily based on the language
processing systems described by Jurafsky & Martin (2009), with some additional
direction from Huang et al (2001). The models were trained and evaluated on data



from TIMIT titled " TIMIT Acoustic-Phonetic Continuous Speech Corpus” by Garo-
folo et al released in 1993. This data set consists of 630 speakers of 10 basic English
dialects uttering 10 phonemically varying sentences (although no two speakers had
the same set of 10 sentences). The data set included audio files of each sentence, a
transcript of each sentence, files marking the beginning and end of each word and
phoneme in the audio file, and some basic information about the speakers themselves.

The data extraction process varied by task. I created four different tasks to evaluate
the effectivenesses of the resulting models in different circumstances. All tasks had
the goal of identifying words by extracting the section of the audio file corresponding
to those words and trying to model those words. It would then compare the likeli-
hood that the task words or two ”gibberish” words (suggested by Peter Mawhorter)
were generated by the model. The gibberish words were two frequently used words
that the model wasn’t trained on for the given task.

The first task used the top four most frequent words, where frequency is measured
by how many times the word was uttered in the unique sentences from all audio files.
This included "the”, 7a”, "to”, and ”of”, with a total of 31071 instances between
all words and 15 unique phonemes. I will refer to this as the Top Four task. The
second, the Top Two task, used the top two most frequent words. This included
"the” and "a”, with 16163 total instances and two unique phonemes. The third,
the Three Alike task, used three similar-sounding words in the list of top ten most
frequent words. This included ”in”, 7is”, and ”it”, with 19572 instances and four
unique phonemes. The final task, the Four Different task, used four words from the
top ten most frequent words that had little phonemic overlap. These were ”the”,
"t0”, "and”, and "he”, with 30359 total instances and nine unique phonemes. Dif-
ferent models were constructed for each of the four tasks.

My program started out by extracting the location of the audio files directory, the
sentence transcript, the word and phoneme timestamps, and some basic informa-
tion about the speaker. It then extracted the audio file data using a scipy library.
Using the word timestamps and the frequency of the recording, it located the start
and end of each word in the data set. It used the starts and ends to extract the
portions of data set corresponding to the current task words. It then used the
" python_speech_features” Python library to extract the MFCC features for every 25
ms window. 25 ms was the suggested window time provided by Jurafsky & Martin.
MFCC features, in general, are found by taking the Fourier Transform of the data,
mapping the results onto something known as the Mel scale, taking the logs of these,



performing another transform called the discrete cosine transform, and then finding
the resulting amplitudes. The result yields what is known as the acoustic vector, a
13-dimensional vector known to be useful for representing phonemes in audio record-
ings (Muda et al, 2010). I continually added these vectors to a matrix of data and
kept track of how many data points (number of windows) each word recording con-
sisted of, and what word it was.

After this, I divided the data into training and testing such that 80% of the record-
ings were used for training data. This did not correspond to precisely 80% of the
data points, because each recording had different numbers of data points based off of
the recording length. The number of data points is how many 25 ms windows it can
be divided into. The expected number of data points used for training is 80%, though.

Next, based off the advice from Jurafsky & Martin, I created and trained a Hidden
Markov Model using Gaussian Mixture emissions using ”hmmlearn”’s ”GMMHMM”
class. I used the number of components equal to the number of unique subphonemes
(three times the number of unique phonemes) across the words in the given task, as
suggested by Jurafsky & Martin. The Hidden Markov Model is a natural selection
for speech recognition because speech consists of a time-varying sequence of indi-
vidual components and subcomponents. For instance, a word can be divided into
phonemes, which can be divided into beginning, middle and end components known
as subphonemes. HMMs are specifically used for modeling components of sequences
of data and identifying the probabilities of transitioning from one component to an-
other in a sequence. In terms of this speech recognition project, we are modeling
subphonemes and the probabilities of transitioning between subphonemes to create
words. Specifically, the model should contain subphonemes as hidden states. Ideally,
an HMM used for speech recognition consists of sequences of transitions between sub-
phonemes that take place within words used in the given data set, as well as loops to
iterate over the same subphoneme multiple times to take into account slower speech
(Jurafsky & Martin, 2009). However, the library I used did not allow me to control
which states could transition to which states. The hope is that after training the
model, it would have more or less the aforementioned desired structure.

The Gaussian Mixture emissions were selected based off the advice from Jurafsky &
Martin. According to them, other emissions are problematic because acoustic models
are continuous and real-valued. Thus emissions like vector quantization, which are
too categorical, are less ideal than Gaussian Mixture emissions, which use continuous
likelihoods of observations. Thus, Gaussian Mixture emissions are more commonly



used in speech recognition, and so I decided to use this for my project (Jurafsky &
Martin, 2009).

To analyze my results, I varied the number of GMMs from five to 55 by 10s to see
the relationship between the performance of the model and the number of GMMs
used. I fit the Hidden Markov Model to the training data, and found the log likeli-
hood of the data sets that correspond to each word in the training and testing data
sets. Then, with guidance from Prof Wu, I used a score metric that is equal to the
mean of the log likelihoods of the data (corresponding to each word) scaled by %,
where n is the number of windows in the recording. This score is important because
longer sequences of data tend to have smaller likelihoods. That happens because
we ask how likely it is for the HMM to produce more data points in a sequence
when the sequence is longer. Since these are logs of probabilities between 0 and 1,
the small likelihoods have log likelihoods that are negative with larger magnitudes.
However, we do not want to compare values that depend on the length of the input.
The score metric circumnavigates this by raising the likelihoods to the % power (or,
equivalently, by scaling the log likelihood by %), thereby taking the geometric mean
of the data points in the given recording. Thus the likelihood we get is an averaged
likelihood, and should not grow with the number of data points in the recording.
Thus, if we take the arithmetic mean of this across all words, we can directly com-
pare the scores of different models on the data without worrying about the effect of
the discrepancies in recording length on scores.

In addition, I used these results to find the optimal number of GMMs, right be-
fore the models overfit the training data. This was done by graphing the test and
training scores across all numbers of GMMs. If the training score continually in-
creases, but the testing score increases, hits a maximum, then decreases, then the
number of GMMs at this maximum would be considered optimal. For each task, I
found this optimal number, and used it as a parameter to build and score a model
for the train, test, and gibberish data. We would expect to see the training data
with a better (lower magnitude) score than the testing data because the model was
fit to the training data. If our model was able to accurately represent the specific
words in the given task, then we would also expect the testing data to have a better
score than the gibberish data. This would mean that the new instances of trained
words would more likely be generated by our model than other words. The results
can be seen in the next section.



3 Results

In our first analysis, we looked at the how the number of GMMs affected the scores
of the training and testing data. An example of the results is shown in Figure 1,
where we map the scores of the training and tesitng data for the Top Two task. As
expected, we noted a continual rise in the scores of the training data across all tasks
as we increased the number of GMMs. This is illustrated in the lefthand graph of
Figure 1. It indicates that increasing the number of GMMSs adds complexity to the
model, thus allowing it to fit the training data better and better as the number of
GMDMs increases.

For the testing data, we consistently saw a peak in the scores at 15 GMMs. This was
true for all tasks except the Top Four Task, for which there was a plateau between
15 and 25 GMMs, indicating that the peak was somewhere in that range. Similarly,
the peak at 15 GMMs for the other tasks only tells us that the peak probably oc-
curred between five and 25 GMMSs, because we tested with intervals of ten GMMs.
For simplicity, we will approximate all peaks as happening at 15 GMMs. We can
then say this is the point at which adding GMMs makes the models fit the test data
worse, and thus this is the point at which overfitting begins.

We can use these results then to say that 15 is likely the best selection for the
number of GMMs parameter. We use this for the second part of our analysis: com-
paring the scores of the training, testing, and gibberish data for the models for each
task. These results are shown in Table 1. To interpret this data, we have to consider
what scale this is. The score is an arithmetic mean of the logs of the geometric means
of probabilities that the models would generate single data points (representing 25
ms windows of audio). Thus, this has a logarithmic scale. So if we have scores x
and y such that x = y + ¢, then this really indicates that the average likelihoods, p,
and p,, had the relationship p, = 105py. In addition, recall that a higher probability
is more desirable (it means the model was more likely to generate the input data),
and this would result in log likelihoods of smaller magnitude, which would in turn
result in scores of smaller magnitude. Thus scores of smaller magnitude represent
data that was better represented by the models. We can use these to interpret the
scores from Table 1.

The first thing to notice is that for every task, the train data has a better score
than the test data, and the test data had a better score than the gibberish data.
First, this means the model fit the training data better than testing data, as ex-



pected. More specifically, the score differences between training and testing data
ranged from 0.7 to 1.1. This indicates that the likelihoods of the training data were
larger by a factor of 5.01 to 12.59, which is a large enough difference to say it repre-
sented the training data better than the testing data.

Second, it fit the testing data better than the gibberish data, with score differences
ranging from 0.8 to 2.5. This indicates that the likelihoods of the testing data were
larger by a factor of 6.31 to 316.23. These are large enough differences to say that
the models represented the testing data better than the gibberish data.

Note that the factor of 316.23 came from the Top Four task (and the Top Two
task was similar at 251.19). The Top Alike and Four Diff tasks had significantly
lower differences between the test and gibberish scores (with factors of 12.59 and
6.31 respectively). This indicates that the models were much better able to distin-
guish the Top Four and Top Two task test set and gibberish set than the Top Alike
and Four Diff test set and gibberish set.

If we just use this statistic to evaluate our model, we would say that it makes sense
that the Top Four and Top Two tasks were better modeled by our program. This is
because these data sets both had the most examples per word, and models are gen-
erally better able to represent populations when they are given larger samples. It is
interesting to note that the models performed better on the Top Alike task than the
Four Diff task. This may be expected because it had significantly fewer phonemes to
model (four versus nine), and thus was able to distinguish task words from gibberish
words partially by nature of the presence or absence of that phoneme. However, it
is also noteworthy that the Four Diff task had more total data. This did not seem
to have a large enough effect to make the Four Diff task easier. At this point, it is
unclear why the Top Alike task was easier than the Four Diff task.

In addition to looking at the differences in train, test, and gibberish scores, we
can also compare the raw scores of the test data for each task. In this case, we see a
different pattern. The best scores were in the Top Four and Four Diff tasks, and the
Top Alike task only had a score that differed from those by 0.2 (a factor of 1.58).
The Top Two task had a somewhat worse score. The difference between the Top
Two task and the Top Four and Four Diff tasks was 0.6 (a factor of 3.98). These
results represent that the models for the Top Four, Top Alike, and Four Diff tasks
were more likely to generate the test data than the Top Two model. However, these
results are not as strong as the previously analyzed results (the difference between



the test and gibberish scores), and they do not take into account how much better
the models are at representing the testing data than gibberish data. Thus, these
results are not as valuable.

4 Conclusion

In this project, I tried to get a better understanding of the underlying structure of
speech recognition systems, as well as what makes them perform better or worse. |
did this by constructing a program, primarily based off direction from the Jurafsky
& Martin book, to analyze and model spoken word data from the " TIMIT Acoustic-
Phonetic Continuous Speech Corpus”. To evaluate this program, I created four tasks,
the Top Four, Top Two, Top Alike, and Four Diff tasks, which consisted of different
sets of words from the data.

The program began by calculating the Mel-frequency cepstral coefficients of 25 ms
windows of recordings of words in the given task. It then constructed multiple
GMMHMMs with five to 55 GMM emissions, and calculated a scoring metric to
evaluate the performance of the different GMMHMMSs on the various tasks. This
was done for the training and testing data. I used these results to see when the mod-
els began to overfit the training data, which was always at about 15 GMM emissions.

After this, I took the GMMHMMS with 15 GMM emissions, and evaluated how
well they performed on the testing, training, and gibberish data using my scoring
metric. These scores were used to evaluate how well the models were able to fit the
data for the different tasks. The models were better able to distinguish the test and
gibberish data for the Top Two and Top Four tasks. However, the models had worse
raw scores for the Top Two tasks than all others. Because the latter statistic did not
show as large of a difference between the performance for the different tasks (based
off of the magnitude differences), we base our results off the former statistic, and
say that our models performed better for the Top Two and Top Four tasks. This is
likely due to the fact that these two tasks had larger data sets.

Our results show that the GMMHMM process with MFCC feature extraction was
able to create reasonable models that could both identify specific spoken words as
well as distinguish words it was trained on from words it was not trained on. In
addition, based off of the differences in the performances of our models on the four
tasks, we can see that the GMMHMMSs performed better on larger data sets. While
our speech recognition system was a much smaller scale project than most modern



speech recognition systems, we can use the results from this program to theorize
that the GMMHMM process used here would likely work for larger, real-world data
sets. Also, the input data size would probably be a major factor in the performance
of such a model. Although we cannot be sure that such an extrapolation is reason-
able, these results at least provide a basic understanding of what speech recognition
process can be like and what factors may be important.
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Figures and Tables

Score
Task Train | Test | Gib | Train - Test score | Test - Gib score
Top Two | -47.4 | -48.1 | -50.5 | 0.7 2.4
Top Four |-46.9 | -47.5 | -50.0 | 0.6 2.5
Top Alike | -46.6 | -47.7 | -48.8 | 1.1 1.1
Four Diff | -46.6 | -47.5 | -48.3 | 0.9 0.8
Table 1: Scores of different data on different tasks, and the score
differences.
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Figure 1: Graphs of the scores of the models trained for the Top
Two task with five to 55 GMMs.
training data set, showing that the more GMMs, the better the fit
on the training data. Scores on the right are for the testing data
set, showing that at more than 15 or so GMMs, the models begin
to overfit the training data.
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