
Providing an Alternate Version of the Logspace
Hierarchy to Recreate the Polynomial Hierarchy

Marina Knittel†, Jana Novotná‡, Jakub Pekárek‡,
Václav Rozhoň‡, Štěpán Šimsa‡, Jakub Svoboda‡

Abstract—The polynomial hierarchy is a central topic in
computer science today, particularly because of its close rela-
tionship with the infamous question of whether or not P=NP.
For instance, we know that P=NP implies that the polynomial
hierarchy collapses. Therefore studying the polynomial hierarchy,
for instance finding new ways to define its structure, is an
important part of research in theoretical computer science. This
project aimed to discover a new hierarchical structure that has a
strong correspondence with the polynomial hierarchy. In the end,
we discovered a structure based off of the logspace hierarchy
that is equivalent to the polynomial hierarchy when given an
additional quantifier. The main consequence of this result is that
we now have a new way to consider the polynomial hierarchy.
Additionally, we were able to define a new set of complete
problems for various levels of the hierarchy. More generally,
we hope this work can act as a stepping stone for further study
in formulations of complexity classes that have somehow relate
to the polynomial hierarchy. The results also provide a strong
framework for the discovery of new natural complete problems
for the polynomial hierarchy phrased in terms of the properties
of our model as opposed to the standard model. The ultimate
goal is to generally improve our understanding of the various
components of the polynomial hierarchy, especially P and NP,
in the hopes of answering broader questions such as whether or
not P=NP.

Index Terms—complexity theory, polynomial hierarchy, P, NP

I. INTRODUCTION

We provide an alternate model for the logspace hierarchy by
altering the function of a canonical Turing machine. This ma-
chine can be most simply characterized as a typical logspace
machine with two modifications to the way it interprets non-
deterministic tapes. First, it can only read the nondeterministic
tape once, from left to right. Second, instead of including one
alternating nondeterministic tape, it has simultaneous access
to one nondeterministic tape for every quantifier in the given
problem.

Most importantly, we show that this model is equivalent to
the polynomial hierarchy (PH) at higher levels. To do this,
we first show that the new hierarchy is embedded in PH by
simulating the kth level of PH with a machine representing the
(k+ 1)th level of our hierarchy. Then we show that these two
levels are actually equivalent by adapting the proof that NL is
in P and applying it to higher levels of our hierarchy. This is
sufficient to prove that the hierarchies are equivalent for higher

NSF grant CCF-1559855
† Department of Computer Science, Harvey Mudd College
‡ Faculty of Mathematics and Physics, Charles University

levels of our modified logspace hierarchy. To further classify
the model, we also characterize a typical complete problem,
SAT with logarithmic pathwidth, and extend it to all levels of
the hierarchy.

II. PRELIMINARIES

This paper introduces the notion of a new hierarchy based
off of a modified Turing machine. We then relate the hierarchy
to another intensively studied hierarchy, the polynomial hier-
archy, or PH, shown in Figure 1. In this section, we discuss
the fundamentals of PH, as well as introduce other concepts
used throughout the paper.

A. The Polynomial Hierarchy
The base of PH is the complexity class P, containing all

languages that can be solved by a polynomial time machine.
The basic polynomial time machine for PH consists of a Turing
machine with an input tape and a polynomial-sized work tape,
and is allowed to run for polynomial time.

Fig. 1. The polynomial hierarchy. Arrows represent containment. The pattern
continues upwards. This paper focuses on classes ΣP

k and ΠP
k [3].

The next level in PH contains NP and coNP. Languages in
NP can be represented as problems in P with an additional
existential variable input. Similarly, languages for coNP prob-
lems look like languages in P with a universal variable. Such
problems are written as follows.



Definition II.1. A language L is in NP if there exists a
polynomial time Turing machine M such that for input x

x ∈ L ⇐⇒ ∃ aM(x, a) = 1.

Similarly, a language L is in coNP if there exists a polynomial
time Turing machine M such that for input x

x ∈ L ⇐⇒ ∀ aM(x, a) = 1.

This addition of a single nondeterministic (existential or uni-
versal) variable in the hierarchy’s base language can be used
to define the first level complexity classes of that hierarchy. If
that variable is existential, then we denote this class Σ, and if
it’s universal, then we denote it Π. In the case of PH, we can
denote NP as ΣP

1 and coNP as ΠP
1 , where the superscript P

denotes we are in PH.
Further addition of alternating nondeterministic variables

can be used to define the higher levels of hierarchies. For
PH, [1] describes the levels as follows.

Definition II.2. A language L is in Σp
k for some k if there

exists a polynomial time Turing machine M such that for input
x

x ∈ L ⇐⇒ ∃ a1∀ a2 . . . Q ak M(x, a1, . . . , ak) = 1,

where Q is ∃ if k is odd, else Q is ∀.
Similarly, language L is in Πp

k for some k if there exists a
polynomial time Turing machine M such that for input x

x ∈ L ⇐⇒ ∀ a1∃ a2 . . . Q ak M(x, a1, . . . , ak) = 1,

where Q is ∃ if k is even, else Q is ∀.

The complexity classes that arise from this definition make
up PH. Some important known features of the general hier-
archical format is that for any k, we know that Σk,Πk ⊆
Σk+1,Πk+1. In the case of PH, we have P = Σ0 = Π0, thus
P ⊆ NP, coNP.

Note that our new hierarchy is based off the logspace
hierarchy. The logspace hierarchy can be defined simlarly to
PH, with the exception that all the aforementioned Turing
machines should use only logarithmic space. The levels of the
logspace hierarchy are denoted ΣL

k and ΠL
k , where L signifies

these classes are in the logspace hierarchy.

B. Configuration Graphs

Configuration graphs are useful representations of the func-
tionality of various machines. In this paper, we will only
discuss configuration graphs in terms of Turing machines.

When a Turing machine is run, the machine keeps track
of its internal state at every timestep. In the vocabulary of
configuration graphs, we call these states “congfigurations”.
At each timestep, the machine uses the information stored
in the configuration and any applicable tape (the input tape
or nondeterministic tapes) to determine what configuration to
move to next. The set of such states and transition rules is
sufficient to describe the functionality of the Turing machine.

A configuration graph encodes this information by creating
one vertex for each configuration of the Turing machine. For

every possible transition between configurations of the ma-
chine, we add a directed edge from the starting configuration to
the ending configuration and note on that edge the conditions
of the relevant tapes required for the machine to take that path.
This completes the configuration graph.

In a sense, the configuration graph is simply a new way to
visualize the Turing machine. Because it encodes every pos-
sible state and transition of the Turing machine, configuration
graphs can be used to simulate the Turing machine on any
input. This technique will be useful for some of the proofs in
the Results section of this paper.

C. Bounded Pathwidth SAT

Canonically, the term “pathwidth” refers to a graph property.
It describes the “width” of something known as a path decom-
position. However, the term can extend to the SAT problem
to define a property of boolean expressions. When considering
an instance of SAT, pathwidth refers to a quality of the path
decomposition of the boolean expression. The decomposition
is as follows.

Consider an instance of SAT, I . We will construct a path
graph where each vertex, which we will refer to as a bag, on
the path contains a subset of the variables that appear in I .
Additionally, we restrict these bags such that if any variable
appears in two bags along the path, it must also appear in all
bags in between. That way, variables must only lie in a single
stretch of contiguous bags.

The purpose of these bags is to provide solutions for the
clauses in SAT. In order to represent the expression for I ,
there must be a mapping from each clause in I to a bag in
the path such that all variables that appear in the clause also
appear in the bag. Now we introduce the term pathwidth with
respect to an instance of SAT.

Definition II.3. Consider I , an instance of SAT. Enumerate
all the possible pathwidth decompositions of I . Let wi,j be the
width of the ith bag in the jth path decomposition of I . Then
the pathwidth of I is

pathwidth = min
j

max
i

wi,j .

We now define the logarithmic bounded pathwidth SAT
problem.

Definition II.4. LBPSAT is the set of SAT problems with
pathwidth at most O(log n), where the path decomposition of
the SAT instance is provided in the input.

In other words, for an instance I of SAT to be a LBPSAT
problem, it must have a path decomposition such that all bags
have size at most O(log n). And this decomposition must be
passed in as part of the input. This problem will be further
addressed in the discussion about complete problems for our
modified logspace hierarchy.

III. RESULTS

In our attempts to modify the logspace hierarchy, we looked
to change the functionality of the underlying machine defining



the hierarchy. The attempted modifications were made with
the problem of classifying the group isomorphism problem in
mind. However, the resulting model did not aid in the study
of the group isomorphism problem, and simply resulted in an
additional way to classify PH. Therefore, while it is useful to
keep in mind the origins of this research, it is not important to
further discuss the motivations behind the initial formulation
of the new hierarchy. In this section, we will simply define
the hierarchy and state our findings.

A. The Modified Logspace Hierarchy

Our hierarchy is a modified version of the logspace hier-
archy. The modifications stem from an alteration made to the
underlying machine present in the formulation of the different
levels of the hierarchy. We made two fundamental changes to
the functionality of this machine.

First, the machine can only read its nondeterministic tapes
once, from left to right. This will decrease the strength of
the machine, as the machine will have less flexibility when
attempting to utilize the information of the nondeterministic
tapes.

Second, the machine’s nondeterministic tapes appear in a
slightly different format. The PH machine, and consequently
the traditional logspace machine, has a single nondeterministic
tape. If the complexity class in question has multiple quanti-
fiers, then the tape alternates between universal and existential
tapes where appropriate. The head can move back and forth
on this tape as much as it needs within the time specifications
of the machine. In our version, the machine has a single
unique tape for each quantifier. The tapes do not alternate.
The machine has a head for each tape, and thus can switch
between the tapes without additional work. This modification
makes our machine stronger, as it can more quickly switch
between reading the different nondeterministic variables.

Based off this definition, it is not directly clear whether
or not our machine is ultimately stronger or weaker than the
typical logspace machine. However, as previously stated, we
discovered that this machine was equivalent to the machine in
PH when you add an additional quantifier.

We will denote the levels of our hierarchy as Σ̂L
k and Π̂L

k ,
where L again represents we are working in logspace, and the
hat designates our new machine.

B. Connecting the Modified Logspace hierarchy to PH

Next, we aim to show that the modified logspace hierarchy
with an additional quantifier is equivalent to PH. Before we
do this, we introduce another modified logspace hierarchy.
Components of this heirarchy are denoted Σ̄L

k and Π̄L
k , which

are the same as Σ̂L
k and Π̂L

k , except the machine can now
iterate back and forth over its multiple existential tapes. Thus
it is stronger than our hierarchy.

Regarding this hierarchy, we claim the following.

Lemma III.1. ΣP
k = Σ̄L

k .

The proof of this is not completely novel and relevant for
this paper. One direction, ΣP

k ⊆ Σ̄L
k , uses the same argument

as Theorem III.4. The argument for Σ̄L
k ⊆ ΣP

k stems from
the fact that logspace machines are generally speaking weaker
than polynomial time machines. This will help us with the
following Lemma.

We now show the containment of corresponding classes in
the two hierarchies in one direction.

Lemma III.2. For all k ≥ 0, it holds that ΣP
k ⊆ Σ̂L

k+1 and
ΠP

k ⊆ Π̂L
k+1.

Proof. Referring to Lemma III.1, it is sufficient to show that
Σ̄L

k ⊆ Σ̂L
k+1. Consider a machine M̄ for Σ̄L

k . We will construct
a machine, M̂ for Σ̂L

k+1, to simulate this machine.
Denote the tapes for M̄ as t̄1, . . . , t̄k, and for M̂ as

t̂1, . . . , t̂k+1. We designate each M̂ tape as a tuple con-
taining multiple parts. For some general tape, let t̂ =
(i, x1, . . . , xp(n)), where p(n) is the running time of M̄ (we
know p(n) is a polynomial because M̄ will run in polynomial
time). Note t̂1 will not have the first part of the tuple, i,
and t̂k+1 will only consist of the final part, x1, . . . , xp(n).
For our proof, each i will act as an index into the previous
nondeterministic tape, and all xj for each tape will act as
copies of the corresponding nondeterministic tapes for M̄ .
This description will be clarified in the following paragraphs.

Now we will describe the construction of M̂ . It will start by
reading the i portion of each of its nondeterministic tapes and
storing it on its work tape. The purpose of i is to index bits
in the xj sections of the previous existential tape. Since xj

is a copy of a nondeterministic tape of M̄ , then it is at most
p(n) long. To index that, you need log(p(n)) = O(log n) bits.
Thus, all i can be stored on the M̂ logspace work tape.

Next, our machine acts as M̄ on the input. However,
whenever the iterator on some t̄j head moves left (backwards),
the head on t̂j moves from its current component, xk, to the
next, xk+1, to read that bit. As we read blocks, we store the
bits in the current xk that we know we will read in the next
xk+1. So when we move on to xk+1, we can compare the
corresponding bits in xk and xk+1.

When we compare these bits, we check equality. If the bits
are equal, move on. Otherwise, if we are reading an existential
tape (t̂j for odd j), M̂ rejects. Else, we are reading a universal
tape, and M̂ accepts. If neither of these events occur before M̂
gets to t̂k+1, then it accepts if t̂k+1 is existential, and rejects
if it’s univeral.

We claim this accepts if and only if M̄ accepts. If M̄
accepts, we show that M̂ accepts. Consider t̂1, an existential
tape. Let every xj on this tape contain the contents of t̄1. Then
the xj’s for t̂1 are all the same, so M̂ will not reject due to
reading incongruous bits on this tape.

Now look at t̂2, a universal tape. If not all xj’s are
equivalent, then there is some xj and xj+1 that differ by at
least one bit. Set the i portion of the t̂3 tape such M̂ compares
these two bits. Then M̂ will accept, as desired. Otherwise, all
xj’s are equivalent, and M̂ will neither accept nor reject.

The machine continues in this manner. Consider the case
where M̂ reaches the t̂k and has not yet accepted. If t̂k is



universal, M̂ may accept following the logic of the previous
paragraph. Otherwise, note that M̂ will have accurately simu-
lated M̄ as it reads all of its nondeterministic tapes. Thus, at
the end, because M̄ accepts, M̂ accepts.

Thus we have shown one direction of the bidirectional
implication. Next, consider when M̄ rejects. The proof of this
follows the previous proofs, except we want to look at where
M̂ rejects and show it won’t accept. For the existential tapes,
we can equivalently view them as universal tapes and show
they won’t reject. Universal tapes can similarly be viewed
as existential tapes. Then, the same result holds. Thus, the
bidirectional implication holds.

Therefore we have constructed a machine M̂ to simulate
M̄ . Thus Σ̄L

k ⊆ Σ̂L
k+1, and, consequently, ΣP

k ⊆ Σ̂L
k+1, as

desired.

Next, we show containment in the reverse direction.

Lemma III.3. For all k ≥ 0, it holds that Σ̂L
k+1 ⊆ ΣP

k and
Π̂L

k+1 ⊆ ΠP
k .

Proof. To prove this, we only consider the Σ classes and
extend it to Π. This work is based off the widely known
proof from [2] that the complexity class NL under the classical
logspace model is a subset of P. It can apply to the modified
hierarchy with little alteration to show that any machine for
Σ̂L

k+1 can be simulated by a machine for ΣP
k for all k.

Consider some k. Using a ΣP
k machine, we will attempt to

construct a given Σ̂L
k+1 machine using its configuration graph.

Let’s call the Σ̂L
k+1 machine we’re trying to simulate ML, and

the ΣP
k machine we’re constructing to run the simulation MP .

Consider when the k alternations on the nondeterministic
tape of MP contain the contents of the first k nondeterministic
tapes of ML. Given this information, MP can hardwire the
contents of these k tapes into the configuration graph of ML.
Now there is only one nondeterministic tape affecting the
configuration graph of ML.

We’re left with a configuration graph for NL or coNL
(depending on the remaining quantifier for ML), and a P
machine (MP without its nondeterministic tape). Since we
know NL, coNL ⊆ P, clearly this final P machine can be used
to simulate the NL or coNL machine. Apply this simulation
to construct our simulation for ML using NP .

Thus, we have shown that for any Σ̂L
k+1 machine, there

is a ΣP
k machine that can simulate it. A similar argument

shows that for every Π̂L
k+1 machine, there is a ΠP

k machine
that can simulate it. Thus, we have shown that Σ̂L

k+1 ⊆ ΣP
k

and Π̂L
k+1 ⊆ ΠP

k .

Combining the results for the Lemma III.2 and III.3, we
can directly conclude the following.

Theorem III.1. For all k ≥ 0, it holds that ΣP
k = Σ̂L

k+1 and
ΠP

k = Π̂L
k+1.

Therefore, our modified logspace hierarchy with an addi-
tional quantifier is equivalent to PH.

C. Complete Problems for the Modified Logspace Hierarchy

One way to characterize a hierarchy is to define complete
problems for the complexity classes at different levels of the
hierarchy. While we already know many complete problems
for the different levels of the modified logspace hierarchy—
they’re the same as the ones in the correspond levels of PH—,
understanding the complete problems that naturally fall out of
our model might give us a new way to look at PH.

In our studies, we came across a simple formulation for a
complete problem for Σ̂L

1 , LBPSAT, which can be extended to
define a complete problem for all other levels of the hierarchy.

Lemma III.4. LBPSAT is complete for Σ̂L
k .

Proof. First, we show that LBPSAT is in Σ̂L
1 by defining a

machine M for Σ̂L
1 that can solve LBPSAT.

Consider some instance I of LBPSAT. We now describe
the construction of machine M . We can specify that the input
to M , the LBPSAT boolean expresssion, must be provided
in a certain order. Specifically, the clauses must appear in the
same order that their corresponding bags appear in the path
decomposition of I . This is important to describe how M will
act on the input.

Because we are working with Σ̂L
1 , we know M has one

existential tape. Machine M will accept when this existential
tape contains the assignments that satisfy the input. The
variable assignments on the existential tape are provided in
the same order that the variables appear on the input tape.

Machine M will act as follows. It reads directly through
the clauses of the input tape. Since M is provided the path
decomposition in the input tape, it knows two things every
time it comes across a new bag: all new variables it needs
to store, and all variables it needs to drop. When it reaches
a clause in a new bag, it “erases” all dropped variables from
and writes all new variables to its work tape.

As it reads through the clauses of I , it checks what the
value of each clause is. If any clause evaluates to 0, M stops
and outputs 0. Otherwise, if M finds no clauses evaluate to 0,
M outputs a 1.

Clearly, M outputs the correct value for the given input. We
now confirm that it is a machine for Σ̂L

1 . The machine clearly
only reads the existential tape once from left to right. So all
we have to do is confirm that it only uses logarithmic space.

We can think of the bags in the path decomposition of I as
the set of variables on M ’s work tape. As soon as M reaches
the end of the bag, it erases the variables it no longer needs
and overwrites those cells with the new variables it comes
across (which come from the next bag in the path). Thus it
only needs to store one bag of variables at a time. Since the
number of variables in any bag of I is at most O(log n), the
number of cells M uses on its work tape is at most O(log n).
Thus it satisfies space limit, and therefore is a machine for
Σ̂L

1 .
Next, we must show that LBPSAT is hard for Σ̂L

1 . This
will be based off of the proof in [2] that SAT is complete for
NP. Apply the same deconstruction of the machine M for Σ̂L

1



into boolean expressions. Call this boolean expression I . We
will prove I is an instance of LBPSAT.

Because we know M has a worktape of size O(log n),
we have some additional information about the clauses in I .
Consider all the clauses at some timestep t. These clauses
specify precisely the state of M at timestep t. A table of the
elements required to describe M for each state and the number
of bits required in their representation is depicted in Table 1.

TABLE I
CONTENTS REQUIRED FOR EACH STATE OF M

Element Bits in Representation
Input tape head location O(logn)
Work tape head location O(log(logn))

Work tape contents O(logn)

As exhibited by Table 1, the number of bits required to store
the entire state of the machine at any given time, besides the
initial and final timesteps, is O(log n). Thus the total number
of variables that can be present in the clauses at any such
timestep is O(log n). Note that most of the clauses for the
initial and final states requite a constant number of bits. The
one exception is the initial contents of the work tape, which
clearly only contains O(log n) bits as well. Therefore, for all
states, only O(log n) variables are required. And note that
since all these variables are time-dependent, they cannot be
present in any other timesteps.

Therefore, we could construct a path for I where we create
a single bag for each timestep. This bag contains precisely
the variables in the clauses corresponding to that timestep. So
each bag only contains O(log n) variables. Additionally, since
variables only show up in the clauses corresponding to a single
timestep, the variables will also only show up in a single bag.
In other words, each variable is stored in a single contiguous
stretch of bags (or a single bag). Thus I is an instance of
LBPSAT.

Applying the same argument used in [2], we know I is true
if and only if M outputs 1 on its input. Namely, M can be
represented by a formula in LBPSAT. Thus LBPSAT is hard
for Σ̂L

1 , completing our proof of completeness.

It then follows that we can construct similar complete
problems for other levels of the modified logspace hierarchy.

Theorem III.2. Consider the language L such that
x ∈ L if and only if there is a machine M where
∃ a1 . . . Q akM(x, a1, . . . , ak) = 1, where the quantifiers
alternate between existential and universal, and M is a Turing
machine for Σ̂L

k . Then L is complete for Σ̂L
k .

Similarly, if L is defined with a ∀ quantifer in the beginning
of the equation, and M is a Turing Machine for Π̂L

k , then L
is complete for Π̂L

k .

The proof of this directly stems from Lemma III.4. Note the
proof does not depend on how many nondeterministic tapes
M has for either direction of the proof.

And thus we have characterized a set of complete problems
for all levels of the modified logspace hierarchy. Additionally,

combining Theorem III.1 and Theorem III.2, we can directly
conclude the following.

Theorem III.3. Consider the languages mentioned in Theo-
rem III.2. For any given k ≥ 2, these languages are complete
for ΣP

k−1 and ΠP
k−1 respectively.

Thus we have also provided an alternate representation for
the complete problems of the polynomial hierarchy.

IV. CONCLUSION

One of the most notorious questions in computer science
is whether or not P = NP. This question can be rephrased
as: “Does PH collapse to P?” Gaining a deeper insight into
PH, its possible representations, and problems that relate to
it can help us further understand important questions like the
relationship between P and NP. In addition, showing that our
modified logspace hierarchy is closely tied to PH can give us
more information about how complexity structures like these
work. For instance, the modified logspace hierarchy collapses
if and only if PH collapses. If we can find relations between
other complexity classes and the modified logspace hierarchy,
then that relationship should directly translate to some sort
of connection with PH. Overall, this new model gives us a
different perspective with which to view PH, and could be
used to find new relations to PH.

It is not completely clear what direction future work in
this area should take to utilize the findings of this report.
The modified logspace hierarchy has a clear connection to a
bounded pathwidth representation of SAT. Perhaps one might
attempt to interpret previous results on this topic in the context
of the new model. In addition, the modified logspace hierarchy
has strong ties to the traditional logspace hierarchy, however
there is a divergence between the classes after the first level of
the hierarchy. Nevertheless, it may prove worthy to examine
the relationship further to explore how the logspace hierarchy
and PH relate.

In order to more fully characterize the modified logspace
hierarchy and related problems, one could search for more
natural problems that are complete for various levels of
the model. This most likely implies searching for complete
problems for various levels of PH and applying a pathwidth
restriction or an equivalent type of modification.

ACKNOWLEDGMENT

This work would not be possible without grant CCF-
1559855 for financial support. I would like to thank Dr
Eric Allender and Dr Periklis Papakonstantinou for helpful
discussion, as well as Dr Lazaros Gallos and DIMACS at
Rutgers University for their support. An additional thanks to
Kayla Cummings and Edgar Jaramillo for useful comments
and suggestions.

REFERENCES

[1] S. Arora and B Barak, “The polynomial hierarchy and alternations,”
in Computational Complexity: A Modern Approach, 1st ed. Cambridge,
UK: Cambridge University Press, 2007, ch. 5, sec. 2, pp. 97-99.



[2] M. R. Garey and D. S. Johnson, “The Theory of NP-Completeness,”
in Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1st ed. Murray Hills, New Jersey, USA: Bell Telephone
Laboratories, 1979, ch. 2, sec. 6, pp. 38-44.

[3] The Polynomial Hierarchy. (2015). [image] Available at:
https://plato.stanford.edu/entries/computational-complexity/fig4.png
[Accessed 24 Jul. 2017].


