
Adaptive Massively Parallel Constant-round Tree Contraction

MohammadTaghi Hajiaghayi∗

University of Maryland
hajiagha@cs.umd.edu

Marina Knittel†

University of Maryland
mknittel@cs.umd.edu

Hamed Saleh
University of Maryland
hamed@cs.umd.edu

Hsin-Hao Su‡

Boston College
suhx@bc.edu

Abstract

Miller and Reif’s FOCS’85 [MR89] classic and fundamental tree contraction algorithm is a
broadly applicable technique for the parallel solution of a large number of tree problems. Addi-
tionally it is also used as an algorithmic design technique for a large number of parallel graph al-
gorithms. In all previously explored models of computation, however, tree contractions have only
been achieved in Ω(log n) rounds of parallel run time. In this work, we not only introduce a gen-
eralized tree contraction method but also show it can be computed highly efficiently in O(1/ε3)
rounds in the Adaptive Massively Parallel Computing (AMPC) setting, where each machine has
O(nε) local memory for some 0 < ε < 1. AMPC is a practical extension of Massively Parallel
Computing (MPC) which utilizes distributed hash tables [BBD+17, BDE+19a, KLM+14]. In
general, MPC is an abstract model for MapReduce, Hadoop, Spark, and Flume which are cur-
rently widely used across industry and has been studied extensively in the theory community
in recent years. Last but not least, we show that our results extend to multiple problems on
trees, including but not limited to maximum and maximal matching, maximum and maximal
independent set, tree isomorphism testing, and more.

1 Introduction

In this paper, we study and extend Miller and Reif’s fundamental FOCS’85 [MR85,MR91,MR89]

O(log n)-round parallel tree contraction method. Their work leverages PRAM, a model of compu-

tation in which a large number of processors operate synchronously under a single clock and are

able to randomly access a large shared memory. In PRAM, tree contractions require n processors.

Though the initial study of tree contractions was in the CRCW (concurrent read from and write to

shared memory) PRAM model, this was later extended to the stricter EREW (exclusive read from

and write to shared memory) PRAM model [DNP86] as well, and then to work-optimal parallel

algorithms with O(n/ log n) processors [GMT88]. Since then, a number of additional works have

also built on top of Miller and Reif’s tree contraction algorithm [ABH+04,CV88,GR89]. Tree-based

computations have a breadth of applications, including natural graph problems like matching and

∗Supported by the NSF BIGDATA Grant No. 1546108, NSF SPX Grant No. 1822738, and NSF AF Grant No.
2114269.

†Supported by the NSF BIGDATA Grant No. 1546108, NSF SPX Grant No. 1822738, ARCS Endowment Award,
and Ann G. Wylie Fellowship.

‡Supported by NSF Grant No. CCF-2008422.

1

ar
X

iv
:2

11
1.

01
90

4v
1

 [
cs

.D
S]

 2
 N

ov
 2

02
1

bisection on trees, as well as problems that can be formulated on tree-like structures including

expression simplification.

The tree contraction method in particular is an extremely broad technique that can be applied

to many problems on trees. Miller and Reif [MR89] initially motivated their work by showing it can

be used to evaluate arithmetic expressions. They additionally studied a number of other applica-

tions [MR91], using tree contractions to construct the first polylogarithmic round algorithm for tree

isomorphism and maximal subtree isomorphism of unbounded degrees, compute the 3-connected

components of a graph, find planar embeddings of graphs, and compute list-rankings. An incredible

amount of research has been conducted to further extend the use of tree contractions for online

evaluation of arithmetic circuits [MRK88], finding planar graph separators [GM87], approximating

treewidth [BDD+16], and much more [AKL+89, GK96, GV06, JL16, MR87, PPTT15]. This work

extends classic tree contractions to the adaptive massively parallel setting.

The importance of large-scale data processing has spurred a large interest in the study of mas-

sively parallel computing in recent years. Notably, the Massively Parallel Computation (MPC)

model has been studied extensively in the theory community for a range of applications [AG15,

ANOY14,ASS+18,ASZ19,ABB+19,ACK19,ASW19,BBD+17,BBD+18b,BHH19,BDE+19b,BDH+19,

BEG+18,CLM+18,GGK+18,HK20,HLL18,LMOS20,NS19,RVW16,YV18], many with a particular

focus on graph problems. MPC is famous for being an abstraction of MapReduce [KSV10], a pop-

ular and practical programming framework that has influenced other parallel frameworks including

Spark [ZXW+16], Hadoop [Fou], and Flume [CRP+10]. At a high level, in MPC, data is distributed

across a range of low-memory machines which execute local computations in rounds. At the end

of each round, machines are allowed to communicate using messages that do not exceed their local

space constraints. In the most challenging space-constrained version of MPC, we restrict machines

to O(nε) local space for a constant 0 < ε < 1 and Õ(n+m) total space (for graphs with m edges,

or just Õ(n) otherwise).

The computation bottleneck in practical implementations of massively parallel algorithms is

often the amount of communication. Thus, work in MPC often focuses on round complexity, or the

number of rounds, which should be O(log n) at a baseline. More ambitious research often strives for

sublogarithmic or even constant round complexity, though this often requires very careful methods.

Among others, a specific family of graph problems known as Locally Checkable Labeling (LCL)

problems – which includes vertex coloring, edge coloring, maximal independent set, and maxi-

mal matching to name a few – admit highly efficient MPC algorithms, and have been heavily

studied during recent years [BHH19,ACK19,ABB+19,BBD+19,GGJ20,GU19,CLM+18]. Another

consists of DP problems on sequences including edit distance [BEG+18] and longest common sub-

sequence [HSS19], as well as pattern matching [HSSS21]. The round complexity of aforementioned

MPC algorithms can be interpreted as the parallelization limit of the corresponding problems.

While MPC is generally an extremely efficient model, it is theoretically limited by the widely

believed 1-vs-2Cycle conjecture [GKU19], which poses that distinguishing between a graph that is

a single n-cycle and a graph that is two n/2-cycles requires Ω(log n) rounds in MPC. This has

been shown to imply lower bounds on MPC round complexity for a number of other problems,

including connectivity [BDE+19b], matching [GKU19,NS19], clustering [YV18], and more [ASZ19,

GKU19,LMOS20]. To combat these conjectured bounds, Behnezhad et al. [BDE+19a] developed a

stronger and practically-motivated extension of MPC, called Adaptive Massively Parallel Computing

(AMPC). AMPC was inspired by two results showing that adding distributed hash tables to the

MPC model yields more efficient algorithms for finding connected components [KLM+14] and

creating hierarchical clusterings [BBD+17]. AMPC models exactly this: it builds on top of MPC

by allowing in-round access to a distributed read-only hash table of size O(n+m). See Section 1.1

2

for a formal definition.

In their foundational work, Behnezhad et al. [BDE+19a] design AMPC algorithms that out-

perform the MPC state-of-the-art on a number of problems. This includes solving minimum

spanning tree and 2-edge connectivity in log logm/n(n) AMPC rounds (outperforming O(log n)

and O(logD log logm/n n) MPC rounds respectively), and solving maximal independent set, 2-

Cycle, and forest connectivity in O(1) AMPC rounds (outperforming Õ(
√

log n), O(log n), and

O(logD log logm/n n) MPC rounds respectively). Perhaps most notably, however, they proved that

the 1-vs-2Cycle conjecture does not apply to AMPC by finding an algorithm to solve connectivity

in O(log logm/n n) rounds. This was later improved to be O(1/ε) by Behnezhad et al. [BDE+20],

who additionally found improved algorithms for AMPC minimum spanning forest and maximum

matching. Charikar, Ma, and Tan [CMT20] very recently show that connectivity in the AMPC

model requires Ω(1/ε) rounds unconditionally, and thus the connectivity result of Behnezhad et

al. [BDE+20] is indeed tight.

A notable drawback of the current work in AMPC is that there is no generalized framework for

solving multiple problems of a certain class. Such methods are important for providing a deeper

understanding of how the strength of AMPC can be leveraged to beat MPC in general problems,

and often leads to solutions for entirely different problems. Studying Miller and Reif [MR89]’s tree

contraction algorithm in the context of AMPC provides exactly this benefit. We get a generalized

technique for solving problems on trees, which can be extended to a range of applications.

Recently, Bateni et al. [BBD+18a] introduced a generalized method for solving “polylog-expressible”

and “linear-expressible” dynamic programs on trees in the MPC model. This was heavily inspired

by tree contractions, and also is a significant inspiration to our work. Specifically, their method

solves minimum bisection, minimum k-spanning tree, maximum weighted matching, and a large

number of other problems in O(log n) rounds. We extend these methods, as well as the original

tree contraction methods, to the AMPC model to create more general techniques that solve many

problems in Oε(1) rounds.

1.1 The AMPC Model

The AMPC model, introduced by Behnezhad et. al [BDE+19a], is an extension of the standard

MPC model with additional access to a distributed hash table. In MPC, data is initially dis-

tributed across machines and then computation proceeds in rounds where machines execute local

computations and then are able to share small messages with each other before the next round of

computation. A distributed hash table stores a collection of key-value pairs which are accessible

from every machine, and it is required that both key and value have a constant size. Each machine

can adaptively query a bounded sequence of keys from a centralized distributed hash table during

each round, and write a bounded number of key-value pairs to a distinct distributed hash table

which is accessible to all machines in the next round. The distributed hash tables can also be uti-

lized as the means of communication between the machines, which is implicitly handled in the MPC

model, as well as a place to store the initial input of the problem. It is straight-forward to see how

every MPC algorithm can be implemented within the same guarantees for the round-complexity

and memory requirements in the AMPC model.

Definition 1. Consider a given graph on n vertices and m edges. In the AMPC model, there are

P machines each with sublinear local space S = O(nε) for some constant 0 < ε < 1, and the total

memory of machines is bounded by Õ(n + m). In addition, there exist a collection of distributed

hash tables H0,H1,H2, . . ., where H0 contains the initial input.

3

The process consists of several rounds. During round i, each machine is allowed to make at

most O(S) read queries from Hi−1 and to write at most O(S) key-value pairs to Hi. Meanwhile,

the machines are allowed to perform an arbitrary amount of computation locally. Therefore, it is

possible for machines to decide what to query next after observing the result of previous queries. In

this sense, the queries in this model are adaptive.

1.2 Our Contributions

The goal of this paper is to present a framework for solving various problems on trees with constant-

round algorithms in AMPC. This is a general strategy, where we intelligently shrink the tree itera-

tively via a decomposition and contraction process. Specifically, we follow Miller and Reif’s [MR89]

two-stage process, where we first compress each connected component in our decomposition1, and

then rake the leaves by contracting all leaves of the same parent together. We repeat until we

are left with a single vertex, from which we can extract a solution. To retrieve the solution when

the output corresponds to many vertices in the tree (i.e., maximum matching istead of maximum

matching value), we can undo the contractions in reverse order and populate the output as we

gradually reconstruct the original tree.

The decomposition strategy must be constructed very carefully such that we do not lose too

much information to solve the original problem and each connected component must fit on a single

machine with O(nε) local memory. To compress, we require oracle access to a black-box function, a

connected contracting function, which can efficiently contract a connected component into a vertex

while also retaining enough information to solve the original problem. To rake leaves, we require

oracle access to another block-box function, a sibling contracting function, which executes the same

thing but on a set of leaves that share a parent. These two black-box functions are problem specific

(e.g., we need a different set of functions for maximum matching and maximum independent set).

In this paper, we only require contracting functions to accept nε vertices as the input subgraphs,

and we always run these black-box functions locally on a single machine. Thus, we can compress

any arbitrary collection of disjoint components of size at most nε in O(1) AMPC rounds. See

Section 2.1 for formal definitions.

This general strategy actually works on a special class of structures, called degree-weighted trees

(defined in §2). Effectively, these are trees T = (V,E,W) with a multi-dimensional weight function

where W (v) ∈ {0, 1}Õ(deg(v)) stores a vector of bits proportional in size to the degree of the vertex

v ∈ V . When we use our contracting functions, we use W to store data about the set of vertices

we are contracting. This is what allows our algorithms to retain enough information to construct a

solution to the entire tree T when we contract sets of vertices. Note that the degree of the surviving

vertex after contraction could be much smaller than the total degree of the original set of vertices.

Our first algorithm works on trees with bounded degree, more precisely, trees with maximum

degree at most nε. The reason this is easier is because when an internal connected component

is contracted, we often need to encode the output of the subproblem at the root (e.g., the maxi-

mum weighted matching on the rooted subtree) in terms of the children of this component post-

contraction. In high degree graphs, it may have many children after being contracted, and therefore

require a large encoding (i.e., one larger than O(nε)) and thus not fit on one machine.

In this algorithm, we find that if the degree is bounded by nε and we compress sufficiently small

components, then the algorithm works out much more smoothly. The underlying technique that

allows us to contract the tree into a single vertex in O(1/ε) iterations is a decomposition of vertices

1Each group in our decomposition may consists of multiple connected components on the tree.

4

based on their preorder numbering. The surprising fact is that each group in this decomposition

contains at most one non-leaf vertex after contracting connected components. Thus, an additional

single rake stage is sufficient to collapse any tree with n vertices to a tree with at most n1−ε vertices

in a single iteration. However, we need O(1/ε) AMPC rounds at the beginning of each iteration

to find the decomposition associated with the resulting tree after contractions performed in the

previous iteration. This becomes O(1/ε2) AMPC rounds across all iterations. See Section 3.1 for

the proofs and more details.

This is a nice independent result, proving a slightly more efficient O(1/ε2)-round algorithm on

degree bounded trees. Additionally, many problems on larger degree trees can be represented by

lower degree graphs. For example, both the original Miller and Reif [MR85] tree contraction and

the Betani et al. [BBD+18a] framework consider only problems in which we can replace each high

degree vertex by a balanced binary tree, reducing the tree-based computation on general trees to

a slightly different computation on binary trees. Equally notably, it is an important subroutine in

our main algorithm.

Theorem 1. Consider a degree-weighted tree T = (V,E,W) and a problem P . Given a connected

contracting function on T with respect to P , one can compute P (T) in O(1/ε2) AMPC rounds with

O(nε) memory per machine and Õ(n) total memory if deg(v) ≤ nε for every vertex v ∈ V .

Remark 1. It may be tempting to suggest that in most natural problems the input tree can be

transformed into a tree with degree bounded by nε. However, we briefly pose the MedianParent

problem, where leaves are given values and parents are defined recursively as the median of their

children. By transforming the tree to make it degree bounded, we lose necessary information to find

the median value among the children of a high degree vertex.

Next, we move onto our main result: a generalized tree contraction algorithm that works on

any input tree with arbitrary structure. Building on top of Theorem 1, we can create a natural

extension of tree contractions. Recall that the black-box contracting functions encode the data

associated with a contracted vertex in terms of its children post-contraction. Thus, allowing high

degree vertices introduces difficulties working with contracting functions. In particular, it is not

possible to store the weight vector W (v) of a high degree vertex v inside the local memory of a

single machine. The power of this algorithm is its ability to implement Compress and Rake for

nε-tree-contractions in O(1/ε3) rounds.

The most significant novelty of our main algorithm is the handling of high degree vertices. To do

this, we first handle all maximal connected components of low degree vertices using the algorithm

from Theorem 1 as a black-box. This compresses each such component into one vertex without

needing to handle high degree vertices. By contracting these components, we obtain a special tree

called Big-Small-tree (defined formally in §3.2) which exhibits nice structural properties. Since the

low degree components are maximal, the degree of each vertex in every other layer is at least nε,

implying an O(1/ε) upper-bound on the depth of Big-Small-trees. Hence, after a single rake stage,

the number of high degree vertices drops by a factor of nε.

In order to rake the leaves of high degree vertices, we have to carefully apply our sibling

contracting functions in a way that can be implemented efficiently in AMPC. Unlike Theorem 1 in

which having access to a connected contracting function is sufficient, here we also require a sibling

contracting function. Consider a star tree with its center at the root. Without a sibling contracting

function, we are able to contract at most O(nε) vertices in each round since the components we pass

to the contracting functions must be disjoint. But having access to a sibling contracting function,

we can rake up to O(n) leaf children of a high degree vertex in O(1/ε) rounds. For more details

about the algorithm and proofs see Section 3.2.

5

Theorem 2. Consider a degree-weighted tree T = (V,E,W) and a problem P . Given a connected

contracting function and a sibling contracting function on T with respect to P , one can compute

P (T) in O(1/ε3) AMPC rounds with O(nε) memory per machine and Õ(n) total memory.

Theorem 1 and Theorem 2 give us general tools that have the power to create efficient AMPC

algorithms for any problem that admits a connected contracting function and a sibling contracting

function. Intuitively, they reduce constant-round parallel algorithms for a specific problem on trees

to designing black-box contracting functions that are sequential. We should be careful in designing

contracting functions to make sure that the amount of data stored in the surviving vertex does not

asymptotically exceed its degree in the contracted tree. Also note that a connected contracting

function works with unknown values that depend on the result of other components.

Satisfying these conditions is a factor that limits the extent of problems that can be solved

using our framework. For example, the framework of Bateni et. al [BBD+18a] works on a wider

range of problems on trees since their algorithm, roughly speaking, tolerates exponential growth

of weight vectors using a careful decomposition of tree. Indeed, they achieve these benefits at

the cost of an inherent requirement for at least O(log n) rounds due to the divide-and-conquer

nature of their algorithm. However, their framework comes short on addressing problems such as

MedianParent (defined in Remark 1) that are not reducible to binary trees. Nonetheless, we show

several techniques for designing contracting functions that satisfy these conditions, in particular:

1. In Section 3.3, we prove a general approach for designing a connected contracting function

and a sibling contracting function given a PRAM algorithm based on the original Miller and

Reif [MR85] tree contraction. We do this by observing that in almost every conventional

application of Miller and Reif’s framework, the length of data stored at each vertex remains

constant throughout the algorithm.

2. Storing a minimal tree representation of a connected component contracted into v in the

weight vector W (v) enables us to simplify a recursive function defined on the subtree rooted

at v in terms of yet-unknown values of its children, while keeping the length of W (v) asymp-

totically proportional to deg(v). For instance, see Section 4.1 which utilizes this approach in

the context of maximum weighted matching.

Ultimately, this is a highly efficient generalization of the powerful tree contraction algorithm.

To illustrate the versatility of our framework, we show that it gives us efficient AMPC algorithms

for many important applications of frameworks such as Miller and Reif [MR89]’s and Bateni et

al. [BBD+18a]’s by constructing sequential black-box contracting functions. In doing so, we utilize

a diverse set of techniques, including the ones mentioned above, that are of independent interest

and can be applied to a broad range of problems on trees.

Theorem 3. Algorithms 1 and 2 can solve, among other applications, dynamic expression evalua-

tion, tree isomorphism testing, maximal matching, and maximal independent set in O(1/ε2) AMPC

rounds, and maximum weighted matching and maximum weighted independent set in O(1/ε3)

AMPC rounds. All algorithms use O(nε) memory per machine and Õ(n) total memory.

1.3 Paper Outline

The work presented in this paper is a constant-round generalized technique for solving a large

number of graph theoretic problems on trees in the AMPC model. In Section 2, we go over some

notable definitions and conventions we will be using throughout the paper. This includes the

6

introduction of a generalized weighted tree, a formalization of the general tree contraction process,

the definition of contracting functions, and a discussion of a tree decomposition method we call

the preorder decomposition. In the Section 3, we go over our main results, algorithms, and proofs.

The first result (§3.1) is an algorithm for executing a tree contraction-like process which solves

the same problems on trees of bounded maximum degree. The second result (§3.2) utilizes the

first result as well as additional novel techniques to implement generalized tree contractions. We

additionally show (§3.3) that our algorithms can also implement Miller and Reif’s standard notion

of tree contractions, and (§3.4) we show how to efficiently reconstruct a solution on the entire graph

by reversing the tree contracting process. Finally, in Section 4, we apply our algorithms to solve a

number of popular problems on trees.

2 Preliminaries

In this work, we are interested in solving problems on trees T = (V,E) where |V | = n. Our

algorithms iteratively transform T by contracting components in an intelligent way that: (1) com-

ponents can be stored on a single machine, (2) the number of iterations required to contract T to a

single vertex is small, and (3) at each step of the process, we still have enough information to solve

the initial problem on T .

To achieve (3), we must retain some information about an original component after we contract

it. For instance, consider computing all maximal subtree sizes. For a connected component S with

r = lca(S)2, the contracted vertex vS of S might encode |S| and a list of its leaves (when viewing

S as a tree itself). It is not difficult to see that this would be sufficient knowledge to compute all

maximal subtree sizes for the rest of the vertices in T without considering all individual vertices

in S. Data such as this is encoded as a multi-dimensional weight function which maps vertices to

binary vectors. We will specifically consider trees where the dimensionality of the weight function

is bounded by the degree of the vertex.

We note that in this paper, when we refer to the degree of a vertex in a rooted tree, we ignore

parents. Therefore, deg(v) is the number of children a vertex has.

Definition 2. A degree-weighted tree is a tree T = (V,E,W) with vertex set V , edge set E, and

vertex weight vector function W such that for all v ∈ V , W (v) ∈ {0, 1}Õ(deg(v)).3

Notationally, we let w(v) = dim(W (v)) = Õ(deg(v)) be the length of the weight vectors.

Additionally, note that a tree T = (V,E) is a degree-weighted tree where W (v) = ∅ for all v ∈ V .

In order to implement our algorithm, we also require specific contracting functions whose prop-

erties allow us to achieve the desired result (§2.1). In addition, we will introduce a specific tree

decomposition method, called a preorder decomposition, that we will efficiently implement and

leverage in our final algorithms (§2.2).

2.1 Tree Contractions and Contracting Functions

Our algorithms provide highly efficient generalizations to Miller and Reif’s [MR89] tree contraction

algorithms. At a high level, their framework provides the means to compute a global property with

respect to a given tree in O(log n) phases. In each phase, there are two stages:

• Compress stage: Contract around half of the vertices with degree 1 into their parent.

2lca is the least common ancestor function.
3Õ(f(n)) = O(f(n) logn).

7

• Rake stage: Contract all the leaves (vertices with degree 0) into their parent.

Repeated application of Compress and Rake alternatively results in a tree which has only

one vertex. Intuitively, the Compress stage aims to shorten the long chains, maximal connected

sequences of vertices whose degree is equal to 1, and the Rake stage cleans up the leaves. Both

stages are necessary in order to guarantee that O(log n) phases are enough to end up with a single

remaining vertex [MR89].

In the original variant, every odd-indexed vertex of each chain is contracted in a Compress

stage. In some randomized variants, each vertex is selected with probability 1/2 independently,

and an independent set of the selected vertices is contracted. In such variants, contracting two

consecutive vertices in a chain is avoided in order to efficiently implement the tree contraction in

the PRAM model. However, this restriction is not imposed in the AMPC model, and hence we

consider a more relaxed variant of the Compress stage where each maximal chain is contracted

into a single vertex.

We introduce a more generalized version of tree contraction called α-tree-contractions. Here, the

Rake stage is the same as before, but in the Compress stage, every maximal subgraph containing

only vertices with degree less than α is contracted into a single vertex.

Definition 3. In an α-tree-contraction of a tree T = (V,E), we repeat two stages in a number of

phases until the whole tree is contracted into a single vertex:

• Compress stage: Contract every maximal connected component S containing only vertices

with degree less than α, i.e., deg(v) < α ∀v ∈ S, into a single vertex S′.

• Rake stage: Contract all the leaves into their parent.

Notice that the relaxed variant of Miller and Reif’s Compress stage is the special case when

α = 2. Our goal will be to implement efficient α-tree-contractions where α = nε.

In order to implement Compress and Rake, we need fundamental tools for contracting a single

set of vertices into each other. We call these contracting functions. In the Compress stage, we

must contract connected components. In the Rake stage, we must contract leaves with the same

parent into a single vertex. These functions run locally on small sets of vertices.

Definition 4. Let P be some problem on degree-weighted trees such that for some degree-weighted

tree T , P (T) is the solution to the problem on T . A contracting function on T with respect to P

is a function f that replaces a set of vertices in T with a single vertex and incident edges to form

a degree-weighted tree T ′ such that P (T) = P (T ′)4. There are two types:

1. f is a connected contracting function if f contracts5 connected components into a single

vertex of T .

2. f is a sibling contracting function if f is defined on sets of leaf siblings (i.e., leaves that

share a parent p) of T , and the new vertex is a leaf child of p.

Since the output of the contracting function is a degree-weighted tree, it implicitly must create

a weight W (v) for any newly contracted vertex v.

4With some nuance, it depends on the format of the problem. For instance, when computing the value of the
maximum independent set, the single values P (T) and P (T ′) should be the same. When computing the maximum
independent set itself, uncontracted vertices must have the same membership in the set, and contracted vertices
represent their roots.

5Consider a connected component S with a set of external neighbors N(S) = {v ∈ V \ S : ∃u ∈ S(v, u) ∈ E}.
Then contracting S means replacing S with a single vertex with neighborhood N(S).

8

2.2 Preorder Decomposition

A preorder decomposition (formally defined shortly) is a strategy for decomposing trees into a

disjoint union of (possibly not connected) vertex groups. In this paper, we will show that the

preorder decomposition exhibits a number of nice properties (see §3) that will be necessary for our

tree contraction algorithms. Ultimately, we wish to find a decomposition of vertices V1, V2, . . . , Vk ⊆
V of a given tree T = (V,E) (∪ki=1Vi = V and Vi ∩ Vj = φ ∀i, j : i 6= j) so that for all i ∈ [k], after

contracting each connected component contained in the same vertex group, the maximum degree is

bounded by some given λ. Obviously, this won’t be generally possible (i.e., consider a large star),

but we will show that this holds when the maximum degree of the input tree is bounded as well.

The preorder decomposition is depicted in Figure 1a. Number the vertices by their index in the

preorder traversal of tree T , i.e., vertices are numbered 1, 2, . . . , n where vertex i is the i-th vertex

that is visited in the preorder traversal starting from vertex 1 as root. In a preorder decomposition

of T , each group Vi consists of a consecutive set of vertices in the preorder numbering of the vertices.

More precisely, let li denote the index of the vertex v ∈ Vi with the largest index, and assume l0 = 0

for consistency. In a preorder decomposition, group Vi consists of vertices li−1 + 1, li−1 + 2, . . . , li.

Definition 5. Given a tree T = (V,E), a “preorder decomposition” V1, V2, . . . , Vk of T is defined

by a vector l ∈ Zk+1, such that 0 = l0 < l1 < . . . < lk = n, as Vi = {li−1+1, li−1+2, . . . , li} ∀i ∈ [k].

See Subfigure 1a for an example.

Assume we want each Vi in our preorder decomposition to satisfy
∑

v∈Vi deg(v) ≤ λ for some

λ. As long as deg(v) ≤ λ for all v ∈ V , we can greedily construct components V1, . . . , Vk accord-

ing to the preorder traversal, only stopping when the next vertex violates the constraint. Since∑
v∈V deg(v) ≤ n, it is not hard to see that this will result in O(n/λ) groups that satisfy the degree

sum constraint.

Observation 1. Consider a given tree T = (V,E). For any parameter λ such that deg(v) ≤ λ for

all v ∈ V , there is a preorder decomposition V1, V2, . . . , Vk such that ∀i ∈ [k],
∑

v∈Vi deg(v) ≤ λ,

and k = O(n/λ).

The dependency tree T ′ = (V ′, E′), as seen in Figure 1b of a decomposition is useful notion for

understanding the structure of the resulting graph. In T ′, vertices represent connected components

within groups, and there is an edge between vertices if one contains a vertex that is a parent of a

vertex in the other. This represents our contraction process and will be useful for bounding the

size of the graph after each step.

Definition 6. Given a tree T = (V,E) and a decomposition of vertices V1, V2, . . . , Vk, the de-

pendency tree T ′ = (V ′, E′) of T under this decomposition is constructed by contracting each

connected component Ci,j for all j ∈ [ci] in each group Vi. We call a component contracted to a

leaf in T ′ an independent component, and a component contracted to a non-leaf vertex in T ′ a

dependent component.

3 Constant-round Tree Contractions in AMPC

The main results of this paper are two new algorithms. The first algorithm applies α-tree-

contraction-like methods in order to solve problems on trees where the degrees are bounded by

nε. Though this algorithm is similar in inspiration to the notion of tree contractions, it is not a

true α-tree-contraction method.

9

(a) An example preorder decomposition of T into
V1, V2, . . . , V7 with λ = 8. Edges within any Fi are
depicted bold, and edges belonging to no Fi are de-
picted dashed.

(b) Dependency tree T ′, created by con-
tracting connected components of every Fi.
Each red vertex represents a dependent
component, and each white vertex repre-
sents an independent component.

Figure 1: In Subfigure (a), a preorder decomposition of a given tree T is demonstrated. Based on

this preorder decomposition, we define a dependency tree T ′ so that each connected component S

in each forest Fi is contracted into a single vertex S′. This dependency tree T ′ is demonstrated

in Subfigure (b). It is easy to observe that the contracted components are maximal components

which are connected using bold edges in T , and each edge in T ′ corresponds to a dashed edge in T .

Theorem 1. Consider a degree-weighted tree T = (V,E,W) and a problem P . Given a connected

contracting function on T with respect to P , one can compute P (T) in O(1/ε2) AMPC rounds with

O(nε) memory per machine and Õ(n) total memory if deg(v) ≤ nε for every vertex v ∈ V .

This algorithm provides us with two benefits: (1) it is a standalone result that is quite powerful

in its own right and (2) it is leveraged in our main algorithm for Theorem 2. The only differences

between this result and our main result for generalized tree contractions is that we require deg(v) ≤
nε, but it runs in O(1/ε2) rounds, as opposed to O(1/ε3) rounds. Thus, if the input tree has degree

bounded by nε, then clearly the precondition is satisfied. Additionally, if the tree can be decomposed

into a tree with bounded degree such that we can still solve the problem on the decomposed tree,

this result applies as well.

Our general results are quite similar, with a slightly worse round complexity, but with the

ability to solve the problem on all trees. Notably, it is a true α-tree-contraction algorithm.

Theorem 2. Consider a degree-weighted tree T = (V,E,W) and a problem P . Given a connected

contracting function and a sibling contracting function on T with respect to P , one can compute

P (T) in O(1/ε3) AMPC rounds with O(nε) memory per machine and Õ(n) total memory.

In this section, we introduce both algorithms and prove both theorems.

3.1 Contractions on Degree-Bounded Trees

We now provide an O(1/ε2)-round AMPC algorithm with local space O(nε) for solving any problem

P on a degree-weighted tree T = (V,E,W) with bounded degree deg(v) ≤ nε for all v ∈ V given

a connected contracting function for P . The method, which we call BoundedTreeContract, can be

seen in Algorithm 1.

Much like an α-tree-contraction algorithm, it can be divided into a Compress and Rake

stage. In the Compress stage, instead of compressing the whole maximal components that consist

of low-degree vertices as required for α-tree-contractions, we partition the vertices into groups using

a preorder decomposition and bounding the group size by nε. In the Rake stage, since the degree

10

is bounded by nε, all leaves who are children of the same vertex can fit on one machine. Thus

each sibling contraction that must occur can be computed entirely locally. If we include the parent

of the siblings, we can simply apply Compress’s connected contracting function on the children.

This is why we do not need a sibling contracting function.

Let T0 = T be the input tree. For every iteration i ∈ [O(1/ε)]: (1) find a preorder decomposition

V1, . . . Vk of Ti−1, (2) contract each connected component in the preorder decomposition, and (3)

put each maximal set of leaf-siblings (i.e., leaves that share a parent) in one machine and contract

them into their parent. We sometimes refer to these maximal sets of leaf-siblings by leaf-stars.

After sufficiently many iterations, this should reduce the problem to a single vertex, and we can

simply solve the problem on the vertex.

Algorithm 1: BoundedTreeContract

(Computing the solution P (T) of a problem P on degree-weighted tree T with max degree

nε using connected contracting function C)
Data: Degree-weighted tree T = (V,E,W) with degree bounded by nε and a connected

contracting function C.
Result: The problem output P (T).

1 T0 ← T ;

2 for i← 1 to l = O(1/ε) do

3 Let O be a preordering of Vi−1;

4 Find a preorder decomposition V1, V2, . . . , Vk of Ti−1 with λ = nε using O;

5 Let Si−1 be the set of all connected components in Vi for all i ∈ [k];

6 Let T ′i−1 be the result of contracting C(Si−1,j) for all Si−1,j ∈ Si−1;

7 Let Li−1 be the set of all maximal leaf-stars (containing their parent) in T ′i−1;

8 Let Ti be the result of contracting C(Li−1,j) for all Li−1,j ∈ Li−1;

9 end

10 return C(Tl);

Notice that we can view the first and second steps as the Compress stage except that we limit

each component such that the sum of the degrees in each component is at most nε. Since the

size of the vector W (v) is w(v) = Õ(deg(v)) = Õ(nε), we can store an entire component (in its

current, compressed state) in a single machine, thus making the second step distributable. The

third step can be viewed as a Rake function which, as we stated, can be handled on one machine

per contraction using the connected contracting function.

In order to get O(1/ε2) rounds, we first would like to show that the number of phases is bounded

by O(1/ε). To prove this, we show that there will be at most one non-leaf node after we contract

the components in each group. In other words, the dependency tree resulting from the preorder

decomposition has at most one non-leaf node per group in the decomposition. This is a necessary

property of decomposing the tree based off the preorder traversal. To see why this is true, consider

a connected component in a partition. If it is not the last connected component (i.e., it does not

contain the partition’s last vertex according to the preorder numbering), then after contracting, it

cannot have any children.

Lemma 1. The dependency tree T ′ = (V ′, E′) of a preorder decomposition V1, V2, . . . , Vk of tree

T = (V,E) contains at most 1 non-leaf vertex per group for a total of at most k non-leaf vertices.

In other words, there are at most k dependent connected components in ∪i∈[k]Fi.

11

Proof. Each group Vi induces a forest Fi on tree T , and recall that each Fi is consisted of multiple

connected components Ci,1, Ci,2, . . . , Ci,ci , where ci is the number of connected components of Fi.

Assume w.l.o.g. component Ci,ci is the component which contains vertex li, the vertex with the

largest index in Vi. We show that every connected component in Fi except Ci,ci is independent,

and thus Lemma 1 statement is implied. See in Subfigure 1b that there is at most 1 dependent

component, red vertices in T ′, for each group Vi. Also note that Ci,ci , the only possibly dependent

component in Fi, is always the last component if we sort the components based on their starting

index since li ∈ Ci,ci and each Ci,j contains a consecutive set of vertices.

Assume for contradiction that there exists Ci,j for some i ∈ [k], j ∈ [ci−1], a non-last component

in group Vi, such that Ci,j is a dependent component, or equivalently C ′i,j is not a leaf in T ′. Since

Ci,j is a dependent component, there is a vertex v ∈ Ci,j which has a child outside of Vi. Let u be

the first such child of v in the pre-order traversal, and thus u ∈ Vj for some j > i. Consider a vertex

w ∈ Vi that comes after v in the pre-order traversal. Then, since u, and thus Vj , comes after v and

Vi in the pre-order traversal, u must come after w in the pre-order traversal. Since w is between v

and u in the pre-order traversal, and u is a child of v, the only option is for w to be a descendant

of v. Then the path from w to v consists of w, w’s parent p(w), p(w)’s parent, and so on until we

reach v. Since a parent always comes before a child in a pre-order traversal, all the intermediate

vertices on the path from w to v come between w and v in the pre-order traversal, so they must

all be in Vi. This means w is in Ci,j since w is connected to v in Fi. Since any vertex after v in

Vi must be in Ci,j , Ci,j must be the last connected component, i.e., j = ci. This implies that the

only possibly dependent connected component of Fi is Ci,ci , and all other Ci,j ’s for j ∈ [ci − 1] are

independent.

Lemma 1 nicely fits with our result from Observation 1 to bound the total number of phases

BoundedContract requires. In addition, we can show how to implement each phase to bound the

complexity of our algorithm. Note that we are assuming that our component contracting function

is defined to always yield a degree-weighted tree. We only need to show that the degrees stay

bounded throughout the algorithm.

Proof of Theorem 1. In each phase of this algorithm, the only modifications to the graph that occur

are applications of the connected contracting functions to connected components of the tree. Since

these are assumed to preserve P (T) and we simply solve P (Tl) for the final tree Tl, correctness of

the output is obvious.

An important invariant in this algorithm is the O(nε) bound on the degree of vertices throughout

the algorithm. At the beginning, we know that the degrees are bounded according as it is promised

in the input. We show that this bound on the maximum degree of the tree is invariant by proving

the degree of vertices are still bounded after a single contraction.

Recall that we use preorder decomposition with λ = nε to find the connected components we

need to contract in the Compress stage. According to definition, the total degree of each group in

our decomposition is bounded by λ. After we contract a component S, the degree of the contracted

vertex vS never exceeds the sum of the degree of all vertices in S since every child of vS is a child

of exactly one of the vertices in S. Thus, the degree of vS is bounded by λ = nε. In Rake stage,

we contract a number of sibling leaves into their common parent. In this case, the degree of the

parent only decreases and the bound still holds.

We now focus on round and space complexities. A preordering can be computed using the

preorder traversal algorithm from Behnezhad et al. [BDE+19a], which executed in O(1/ε) rounds

12

with O(nε) local space and Õ(n) total space w.h.p.6 This completes step 1. In steps 2 and 3, the

contracting functions are applied in parallel for a total of O(1) rounds (based off our assumption

about any given contracting functions) within the same space constraints. Thus, all phases require

O(1) rounds except the first, which is O(1/ε) rounds, and satisfy the space constraints of our

theorem.

Now we must count the phases. Lemma 1 tells us that for every group, we only have one non-

leaf component in the dependency graph after each step 2. In step 3, we then “Rake” all leaves

into their parents. This means that the remaining number of vertices after step 3 is equal to the

number of non-leaf vertices in the dependency graph after step 2, which is k = nε. Observation 1

tells us that the resulting graph size is then O(n/nε) = O(n1−ε). Therefore, in order to get a graph

where |Tl| = 1, we require O(1/ε) phases. Combining this with the complexity of each phase yields

the desired result.

3.2 Generalized α-Tree-Contractions

In the rest of this section we prove our main result: a generalized tree contraction algorithm,

Algorithm 2. Building on top of Theorem 1, we can create a natural extension of tree contractions.

Recall from §2 that in the Compress stage, we must contract maximal connected components

containing only vertices v with degree d(v) < α. Conveniently, by Theorem 1, Algorithm 1 achieves

precisely this. Therefore, to implement tree contractions, we simply need to:

1. Identify maximal connected components of low degree (Algorithm 2, line 3), which can be

done in O(1/ε) rounds by Behnezhad et al. [BDE+20].

2. Use our previous algorithm to execute the Compress stage on each component (Algorithm 2,

line 5), which can be done by Algorithm 1 in O(1/ε2) rounds.

3. Apply a function that can execute the Rake stage (Algorithm 2, lines 7 through 14).

To satisfy the third step, we use a sibling contracting function (Definition 4), which can contract

leaf-siblings of the same parent into a single leaf. Since a vertex might have up to n children, to do

this in parallel, we may have to group siblings into nε-sized groups and repeatedly contract until

we reach one leaf. Assuming sibling contractions are locally performed inside machines, this will

then take O(1/ε) AMPC rounds.

We can show that this requires O(1/ε) phases to execute, and each phase takes O(1/ε2) rounds

to compute due to Theorem 1 and our previous argument for Rake by sibling contraction. Thus

we achieve the following result:

Theorem 2. Consider a degree-weighted tree T = (V,E,W) and a problem P . Given a connected

contracting function and a sibling contracting function on T with respect to P , one can compute

P (T) in O(1/ε3) AMPC rounds with O(nε) memory per machine and Õ(n) total memory.

Recall the definition of α-tree-contraction (Definition 3) from §2.1. First, we prove Lemma 2 to

bound the number of phases in α-tree-contraction.

Lemma 2. For any α ≥ 2, the number of α-tree-contraction phases until we have a constant

number of vertices is bounded by O(logα(n)).

6This means with probability at least 1/poly(n)

13

Algorithm 2: TreeContract

(Computing the solution P (T) of a problem P on degree-weighted tree T using a connected

contracting function C and a sibling contracting function R)

Data: Degree-weighted tree T = (V,E,W), a connected contracting function C, and a

sibling contracting function R.

Result: The problem output P (T).

1 T0 ← T ;

2 for i← 1 to l = O(1/ε) do

3 Let Si−1 ← Connectivity(Ti−1 \ {v ∈ V : deg(v) > nε);

4 Let Ki−1 ← Components in Si−1,j which represent a leaf in T ′i−1;

5 Contract each Si−1,j ∈ Ki−1 into S′i−1,j by applying BoundedTreeContract(Sj , C);
6 Let Li−1 be the set of all maximal leaf-stars (excluding their parent) in T ′i−1;

7 for Li−1,0 = {v1, v2, . . . , vk} ∈ Li−1 do

8 for j ← 1 to 1/ε do

9 Split Li−1,j−1 into k/njε parts Li−1,j,1, . . . , Li−1,j,k/njε each of size nε;

10 Contract each Li−1,j,z into L′i−1,j,z by applying R(Li−1,j,z);

11 Let Li−1,j ← {L′i−1,j,1, . . . , L
′
i−1,j,k/njε

};
12 end

13 Contract Li−1,1/ε by applying R(Li−1,1/ε);

14 end

15 Let Ti ← T ′i−1;

16 end

17 return C(Tl);

To show Lemma 2 we will introduce a few definitions. The first definition we use is a useful

way to represent the resulting tree after each Compress stage. Before stating the definition, recall

the Dependency Tree T ′ of a tree T from Definition 6.

Definition 7. An α-Big-Small Tree T ′ is the dependency tree of a tree T with weighted vertices

if it is a minor of T constructed by contracting all components of T made up of low vertices v with

deg(v) < α (i.e., the connected components of T if we were to simply remove all vertices u with

deg(v) ≥ α) into a single node.

We call a node v in T ′ with deg(v) > α in T a big node. All other nodes in T ′, which really

represent contracted components of small vertices in T , are called small components.

Note that a small component may not be small in itself, but it can be broken down into smaller

vertices in T . It is not hard to see the following simple property. This simply comes from the fact

that maximal components of small degree vertices are compressed into a single small component,

thus no two small components can be adjacent.

Observation 2. No small component in an α-Big-Small tree can be the parent of another small

component.

Consider our dependency tree T ′ based off a tree T that has been compressed. Obviously, T ′ is

a minor of T constructed as described for α-Big-Small Tree because the weight of a vertex equals

its number of children (by the assumption of Lemma 2). Note a small component refers to the

compressed components, and a big node refers to nodes that were left uncompressed.

14

To show Lemma 2, we start by proving that the ratio of leaves to nodes in T ′ is large. Since Rake

removes all of these leaves, this shows that T gets significantly smaller at each step. Showing that

the graph shrinks sufficiently at each phase will ultimately give us that the algorithm terminates

in a small number of phases.

Lemma 3. Let T ′i be the tree at the end of phase i. Then the fraction of nodes that are leaves in

T ′i is at least α/(α + 4) as long as w(v) is equal to the number of children of v for all v ∈ T ′i and

α ≥ 2.

Proof. For our tree T ′i , we will call the number of nodes n, the number of leaves `, and the number

of big nodes b. We want to show that ` > nα/(α+ 4). We induct on b. When b = 0, we can have

one small component in our tree, but no others can be added by Observation 2. Then n = ` = 1,

so ` > nα/(α+ 4).

Now consider T ′i has some arbitrary b number of big nodes. Since T ′i is a tree, there must

be some big node v that has no big node descendants. Since all of its children must be small

components and they cannot have big node descendants transitively, then Observation 2 tells us

each child of v is a leaf. Note that since v is a big node, it must have weight w(v) > α, which also

means it must have at least α children (who are all leaves) by the assumption that w(v) is equal

to the number of children.

Consider trimming T ′i on the edge just above v. The size of this new graph is now n∗ =

n − w(v) − 1. It also has exactly one less big node than T ′i . Therefore, inductively, we know the

number of leaves in this new graph is at least `∗ ≥ α
α+4n

∗ = α
α+4(n − w(v) − 1). Compare this to

the original tree T ′i . When we replace v in the graph, we remove up to one leaf (the parent p of v,

if p was a leaf when we cut v), but we add w(v) new leaves. This means the number of leaves in

T ′i is:

` =`∗ − 1 + w(v)

=
α

α+ 4
(n− w(v)− 1)− 1 + w(v)

=
α

α+ 4
n− α

α+ 4
w(v)− α

α+ 4
− 1 + w(v)

=
α

α+ 4
n+

4

α+ 4
w(v)− 2α+ 4

α+ 4

>
α

α+ 4
n+

4

α+ 4
α− 2α+ 4

α+ 4
(1)

≥ α

α+ 4
n (2)

Where in line (1) we use that w(v) > α and in line (2) we use that α ≥ 2.

Now we can prove our lemma.

Proof of Lemma 2. To show this, we will prove that the number of nodes from the start of one

Compress to the next is reduced significantly. Consider Ti as the tree before the ith Compress

and T ′i as the tree just after. Let Ti+1 be the tree just before the i+ 1st Compress, and let ni be

the number of nodes in Ti, n
′
i be the number of nodes in T ′i , and ni+1 be the number of nodes in

Ti+1. Since T ′i is a minor of Ti, it must have at most the same number of vertices as Ti, so n′i ≤ ni.
Since Ti+1 is formed by applying Rake to T ′i , then it must have the number of nodes in T ′i minus

the number of leaves in T ′i (`′i). Therefore:

15

ni+1 = n′i − `′i ≤ n′i −
α

α+ 4
n′i =

4

α+ 4
n′i ≤

4

α+ 4
ni

Where we apply both Lemma 3 that says `′i ≥ α
α+4n

′
i and the fact that we just showed that n′i ≤

ni. This shows that from the start of one compress phase to another, the number of vertices reduces

by a factor of 4
α+4 . Therefore, to get to a constant number of vertices, we require logα+4

4
(n) =

O(logα(n)) phases.

Now we are ready to prove our main theorem.

Theorem 2. Consider a degree-weighted tree T = (V,E,W) and a problem P . Given a connected

contracting function and a sibling contracting function on T with respect to P , one can compute

P (T) in O(1/ε3) AMPC rounds with O(nε) memory per machine and Õ(n) total memory.

Proof. We will show that our Algorithm 2 achieves this result. Lemma 2 shows that there will be

only at most O(1/ε) phases. In each phase i, we start by running a connectivity algorithm to find

maximally connected components of bounded degree, which takes O(1/ε) time. Let Ki−1 be the

set of connected components which are leaves in T ′i−1. Then for each component Si−1,j ∈ Ki−1, we

run BoundedTreeContract (Algorithm 1) in parallel using only our connected contracting function

C. Since the total degree of vertices over all members of Ki−1 is not larger than |Ti−1| and the

amount of memory required for storing a degree-weighted trees is not larger than the total degree,

the total number of machines is bounded above by O(n1−ε). By definition, the maximum degree

of any Si−1,j is nε. By Theorem 1, each instance of BoundedTreeContract requires O(1/ε2) rounds,

O(|Si−1,j |ε) local memory and Õ(|Si−1,j |) total memory. As |Si−1,j | ≤ |Ti−1| (we know |T0| = n

and it only decreases over time), we only require at most O(nε) memory per machine. Since Since

the total degree of vertices over all members of Ki−1 is not larger than |Ti−1|, the total memory

required is only Õ(|Ti−1|)) = Õ(n). This is within the desired total memory constraints.

Finally, R is given to us as a sibling contractor. Consider the Rake stage in our algorithm. We

distribute machines across maximal leaf-stars. For any leaf-star with nε ≤ deg(v) ≤ knε for some

(possibly not constant) k, we will allocate k machines to that vertex. Since again the number of

vertices is bounded above by n, this requires only O(n1−ε) machines. On each machine, we allocate

up to nε leaf-children to contract into each other. We can then contract siblings into single vertices

using R. Since there are at most n children for a single vertex, it takes at most O(1/ε) rounds to

contract all siblings into each other. Then, finally, we can use C to compress the single child into

its parent, which takes constant time.

Therefore, we have O(1/ε) phases which require O(1/ε2) rounds each, so the total number of

rounds is at most O(1/ε3). We have also showed that throughout the algorithm, we maintain O(nε)

memory per machine and Õ(n) total memory. This concludes the proof.

3.3 Simulating 2-tree-contraction in O(1) AMPC rounds

Due to Theorem 2, we can compute any P (T) on trees as long as we are provided with a connected

contracting function and a sibling contracting function with respect to P . A natural question that

arises is the following: for which class of problem P there exists black-box contracting functions?

We argue that many problems P for which we have a 2-tree-contraction algorithm can also be

computed in O(1/ε3) AMPC rounds using nε-tree-contraction.

In many problems which are efficiently implementable in the Miller and Reif [MR89] Tree

Contraction framework, we are given C and R contracting functions, for Compress and Rake

16

stages respectively, which contract only one node: either a leaf in case of Rake or a vertex with

only one child in case of Compress. Let us call this kind of contracting functions unary contracting

functions and denote them by C1 andR1. This is a key point of original variants of Tree Contraction

which contract odd-indexed vertices, or contract a maximal independent set of randomly selected

vertices. Working efficiently regardless of using only unary contracting functions is the reason Tree

Contraction was considered a fundamental framework for designing parallel algorithms on trees in

more restricted models such as PRAM. For example, in the EREW variant of PRAM, an O(log(n))

rounds tree contraction requires to use only unary contracting functionsR1 and C1. More generally,

we define i-ary contracting functions as follows.

Definition 8. An “i-ary contracting function”, denoted by Ci or Ri, is a contracting function which

admits a subset S = {v1, v2, . . . , vk} of at most i+1 vertices at a time such that
∑k

j=1 deg(vj) = O(i).

A special case of i-ary contracting functions, are “unary contracting functions”, denoted by C1 or

R1, which contract only one vertex at a time.

However, in the the AMPC model, we can contract the chains more efficiently, and thus we

are allowed to utilize more relaxed variants of Compress stage. Furthermore, as we show in

Theorem 4, designing unary contracting functions C1 and R1 is not easier than designing i-ary

contracting functions Ci and Ri in the AMPC model. We show this by reducing Ci and Ri to C1

and R1 in O(1) rounds for any i = O(nε). In other words, the restrictions of PRAM model, which

requires C1 and R1 exclusively, enables us to directly translate a vast literature of problems solved

using tree contraction to efficient AMPC algorithms for the same problem given C1 and R1.

As we have shown in Theorem 2, it is possible to solve any problem P (T) in O(1/ε3) AMPC

rounds given a connected contracting function C and a sibling contracting function R, where both

are nε-ary contracting with respect to P . In what follows, we demonstrate the construction of nε-

ary contracting functions given a unary connected contracting function C1 and a sibling contracting

function R1.

Theorem 4. Given a unary connected contracting function C1 and a unary sibling contracting

function R1 with respect to a problem P defined on trees, one can build an i-ary connected con-

tracting function Ci and an i-ary sibling contracting function Ri with respect to P and both Ci and

Ri run in one AMPC rounds as long as i = O(nε).

Proof. First, we present an algorithm for Ci. We are given a connected subtree induced by S =

{v1, v2, . . . , vk} of T so that
∑k

j=1 degT (vj) = O(i). Since i = O(nε), the whole subtree fits into

the memory of a single machine. Some of the leaves of this subtree are known, meaning that they

are a leaf also in T , and others are unknown, meaning that they have children outside S. Let

U = {u1, u2, . . . , ul} be the set of the children of unknown leaves as well as the children of non-leaf

nodes which are outside of S. Ultimately, we want to compress the data already stored on the

vertices of S into a memory of Õ(l) as the degree of v1 in the contracted tree T ′ will be l + 1, and

thus degT ′(v1) = l + 1.

The W (v1) of each contracted vertex v1 is a weighted-degreee tree structure T C(v1) whose leaves

are the children of v1 in T ′, and there is no vertex with exactly one child in T C(v1). Thus, the

number of vertices in T C(v1) is bounded by O(l) = O(degT ′(v1)). In addition, we are guaranteed

that the total size of vectors on each vertex of T C(v1) is bounded by |T C(v1)| since C1 and R1 are

unary contracting functions. Therefore, we assume each W (vj) for each vertex vj ∈ S has stored

a tree structure of size Õ(degT (vj)). We concatenate all these trees to get an initial T C(v1) whose

size is bounded by
∑k

j=1 Õ(degT (vj)) = Õ(nε).

17

We run a 2-tree-contraction-like algorithm locally on T C(v1) using C1 and R1. Note that we

can only rake the known leaves since the data of unknown leaves depend on their children. We

repeating Compress and Rake stages until there is no known leaf or a vertex with one child remain

in T C(v1). Then, according to Lemma 2 for α = 2, the number of remaining vertices in T C(v1) is

bounded by O(l). We store the final T C(v1) in T ′ which requires a memory of Õ(l) = Õ(wT ′(v1)).

Hence, Ci satisfies the size-constraint on the weight vectors of the resulting weighted-degree tree.

Finally, we present an algorithm for Ri which is more straight-forward compared to that of Ci.
We are given a leaf-star S = {v1, v2, . . . , vk} of T so that

∑k
j=1 degT (vj) = O(i). This implies that

there are at most O(nε) vertices in S as long as i = O(nε), and we can fit the whole S into a memory

of a single machine. To simulate Ri, we only need to k − 1 times apply R1 on Sj = {v1, vj+1} at

the j-th iteration. Note that every vj ∈ S is a leaf in T , so the data stored in W (vj) is just Õ(1)

bits and not a tree structure. Theorem 4 statement is implied.

3.4 Reconstructing the Tree for Linear-sized Output Problems

Consider a problem P (T) whose output size is also linear in the size of input n. For instance, in

maximum weighted matching (which we thoroughly study in §4.1) we need to find the matching

itself. Up to this point, in all of our algorithms, we assume the output of function P (T) is of

constant-sized. We simply contract the tree through some iterations until it collapses into a single

vertex, and we do not need to remember anything about a vertex which is contracted as a member

of a connected component or as a member of a leaf-star.

In this section, we present a general approach for retrieving the linear-sized solution in a natural

scenario, where we need to retrieve a recursively-defined weight vector P (v) of constant size for

each vertex v ∈ V . In the special case of maximum weighted matching which can be formulated as

a dynamic programming problem, P (v) contains the final value of different DP values with respect

to the subtree rooted at v7.

Roughly speaking, our reconstruction algorithm is based on storing the information about

components we contracted throughout the algorithm in an auxiliary memory of size O(n). It is

easy to observe that if we store the degree-weighted subtree of every connected component or leaf-

star that we contract during the algorithm we need at most O(n) addition total memory. Note

that during each application of black-box contracting functions, we remove at least one vertex

from the tree and each vertex except root is removed exactly once when the algorithm terminates.

Namely, for every phase i we need to store Si and Li in Algorithm 1, and Ki and every Li,j,z in

Algorithm 2 (In addition to the data stored by each black-box application of Algorithm 1). Since

we have adaptive access to these subsets in AMPC, it is sufficient to index them by the id of the

surviving vertex of each subset.

The full reconstruction algorithm starts after the main contraction algorithm finishes. We only

need to store the information about contracted subsets during the running time of the contraction

algorithm. Next, we iterate over the phases of the algorithm in reverse order, i.e., i = {1/ε, 1/ε −
1, . . . , 1}, and undo the contractions that were performed during phase i. Let Cv be a connected

contracted component rooted at v, and {w1, w2, . . . , wk} be children of v post-contraction.

Whenever we undo a connected contraction like Cv, we replace v with the whole structure of

Cv including W (u) for every u ∈ Cv, u 6= v. Then we populate the P (u) for every u ∈ Cv, u 6= v.

During the contraction algorithm P (wj) is not known for any j. However, during the reconstruction

we know P (wj) for every 1 ≤ j ≤ k since these vertices are contracted in a later phase than the

7Note that retrieving P (v) for each vertex v still does not give us the optimum matching and a problem-specific
post-processing step is required to retrieve the actual matching

18

phase we contract Cv. Hence, we have already populated P (wj) and we can use these values to

locally populate P (u) for every u ∈ Cv. Undoing the sibling contracting functions in much simpler

since their values do not depend on other vertices nor the value of other vertices depend on their

value. We populate P (u) for every u ∈ L, where L is a leaf-star, based on the already constant-sized

weight vectors W (u).

4 Applications

In this section, we show that our tree contraction algorithm (Algorithm 2) as well as our bounded

contraction algorithm (Algorithm 1) extend to a number of applications addressed by both Miller

and Reif [MR85] and Behnezhad et al. [BBD+18b]. While this covers many important examples

of solving problems in AMPC using tree contractions, this is only a subset of the problems we can

solve.

Theorem 3. Algorithms 1 and 2 can solve, among other applications, dynamic expression evalua-

tion, tree isomorphism testing, maximal matching, and maximal independent set in O(1/ε2) AMPC

rounds, and maximum weighted matching and maximum weighted independent set in O(1/ε3)

AMPC rounds. All algorithms use O(nε) memory per machine and Õ(n) total memory.

This section has multiple subsections that show different strategies to solve problems using

Algorithms 1 and 2. Across the sections, we prove a lemmas for each problem in Theorem 3 that

ultimately prove the theorem. In Section 4.1, we apply Algorithm 2 to solve maximum weighted

matching and maximum weighted independent set in O(1/ε3) rounds. In Section 4.2, we apply

Algorithm 1 to solve maximal matching and maximal independent set in O(1/ε2) rounds. Finally,

in Section 4.3, we use Algorithm 1 to solve expression evaluation in O(1/ε2) rounds and show how

this extends to a similarly efficient algorithm for tree isomorphism testing.

4.1 Maximum Weighted Matching and Independent Set

In this section, we show how to solve maximum weighted matching and independent set on trees

efficiently in AMPC. While these results are explained in the context of maximum weighted match-

ing, the same strategies translate to maximum weighted independent set. For maximum weighted

matching, or MWM, we prove:

Lemma 4. MWM on trees can be solved in O(1/ε3) AMPC rounds with O(nε) local memory and

Õ(n) total memory.

Consider a weighted tree T = (V,E, ω) where ω is the edge weight function. We will let Tv
for any vertex v ∈ V be the maximal subtree rooted at v in T . We first explain how a standard

bottom-up dynamic program would solve this problem. Let D be the dynamic program table where

D(v) for any v ∈ V is the stored data corresponding to Tv. This dynamic program gets solved

inductively based off vertex height starting at the leaves. For each vertex v ∈ V , we want to find

two main values and store them in D(v): (1) cv, the value of the MWM on Tv, and (2) c′v, the same

value except we do not allow v to be matched. If Chv is the children of v, we can write cv and c′v
in terms of that of its children:

19

cv = max

 max
u∈Chv

ω(u, v) + c′u +
∑

x∈Chv\{u}

cx

 ,
∑
u∈Chv

cu

 (1)

c′v =
∑
u∈Chv

cu (2)

For the simpler c′v, we know that the value of the MWM of Tv assuming v is not matched is the

sum of the MWMs on Tu for all u ∈ Chv. For cv, this is one possibility, but we could also consider

matching v to some u ∈ Chv. In that case, we get the added edge weight ω(u, v), but we require u

to not be matched when we consider the MWM of Tu, so we use c′u instead of cu. Then cv is just

the maximum of all these options. We can simplify these equations by pulling out the summations:

cv = max

{
max
u∈Chv

(
ω(u, v) + c′u − cu

)
, 0

}
+
∑
u∈Chv

cu (3)

This is the standard dynamic program to solve MWM on trees. The data computed at each

vertex v is D(v) = (cv, c
′
v). This is passed up to its parent u so that D(u) = (cu, c

′
u) can be solved

and so on until we are able to compute cr where r is the root of T . This will be our final solution

that computes the value of the maximum weighted matching.

Before we describe our contraction process, we formally define our dynamic program. Note

that this will include some notation not introduced in the description above. Afterwards, we will

describe why the additional pieces of information are necessary.

Definition 9. Let D be the MWM dynamic table on a given tree T = (V,E) that acts on both

vertices and edges. Then D(v) = (cv, c
′
v, av, bv) and D(e) = (ω1(e), ω2(e), ω3(e), ω4(e)) where:

• cv is a function that computes the MWM on Tv

• c′v is a function that computes the MWM on Tv assuming v is not matched

• av and bv are constants

• ωi(e) for i ∈ [4] are four different constant weights on edge e

and more specifically:

cv = max{ max
u∈Chv

(
ω1(u, v) + c′u − cu

)
, max
u∈Chv

(ω2(u, v)) , max
u∈Chv

(
ω3(u, v) + c′u − cu

)
,

max
u∈Chv

(ω4(u, v)) , av, 0}+
∑
u∈Chv

cv,u + bv

c′v =
∑
u∈Chv

cv,u + bv

for cv,u = max{ω3(u, v) + c′u, ω4(u, v) + cu}.

It is not too hard to see that this is a generalization of the MWM dynamic program. If we let

ω(e) = (ω(v),−∞,−∞, 0) for all e ∈ E and av = bv = 0 for all v ∈ V , then this directly becomes

the dynamic program we mentioned before. Therefore:

20

Proposition 1. Consider a tree T = (V,E). The dynamic program D from Definition 9 solves

MWM when ω(e) = (ω(v),−∞,−∞, 0) for all e ∈ E and av = bv = 0 for all v ∈ V . In other

words, for all v ∈ V , cv from D(v) is the value of the MWM on Tv.

The reason why we require this additional data in D to implement our algorithm is that it

cannot compute this dynamic program simply from bottom up. In intermediate steps, it will have

to contract arbitrary connected components C rooted at v into a single vertex. Since C should

represent the value of the MWM of the maximal subtree containing all of the component C, we let

cC = cv and c′C = c′v. That way, the maximal subtree in question, Tv, contains the entire connected

component C.

In order to solve the dynamic program on the tree after contracting C, we need to be able to

compute cv and c′v as functions of the data of C’s children, {D(u)}u∈ChC , after C is contracted.

This is precisely the information we need to encode into C: how to compute cC = cv and c′C = c′v
in terms of {cu, c′u}u∈ChC . Obviously, this could be easily done by recalling the entire structure

of C and using that to continue the dynamic program from C’s children up through the internal

nodes of C until we compute v. However, this is inefficient, because this is as large as |C|. Recall

that our algorithm must store only Õ(deg(C)) bits, or alternatively, O(deg(C)) values. Instead, we

show how to contract the component C to create a smaller component C ′ where |C ′| = O(deg(C))

such that we can still solve the dynamic program on C.

First, we observe that |C ′| = O(deg(C)) if it contains no internal leaves (i.e., vertices that have

no children in T) and no internal nodes that only have one child in T . We show how to contract

such vertices to reduce the component size. Consider a set of leaves L ∈ C that share a parent p.

Since C is connected, p ∈ C. Since any ` ∈ L has no children in or out of C, we know c` and c′`
have no dependencies, meaning they are constants. Consider rewriting the equation for cp and c′p
from Definition 9 by simply separating the leaf and nonleaf children:

cp = max{ max
u∈Chp\L

(
ω1(u, p) + c′u − cu

)
, max
u∈Chp\L

(ω2(u, p)) ,

max
u∈Chp\L

(
ω3(u, p) + c′u − cu

)
, max
u∈Chp\L

(ω4(u, p)) ,

max{max
`∈L

(
ω1(u, p) + c′u − cu

)
, max
u∈Chp\L

(ω2(u, p)) ,

max
u∈Chp\L

(
ω3(u, p) + c′u − cu

)
, max
u∈Chp\L

(ω4(u, p)) , ap}, 0}

+
∑

u∈Chp\L

cp,u +
∑
`∈L

cp,` + bp

c′p =
∑

u∈Chp\L

cp,u +
∑
`∈L

cp,` + bp.

Note that many of these terms, only consist of constants. Specifically the nested maximization

term in cp and
∑

`∈L cp,` + bp, which appears in both cp and c′p, are constants. When we contract,

we can compute these two constant values and combine them with the constant values associated

with D(p). This is how we compute ap and bp from Definition 9. Note that these are running values

that change over time. Specifically, ap and bp start at zero (as in the standard MWM problem),

21

and as a vertex ` that is a child of p gets trimmed:

ap ←max{max
`∈L

(
ω1(u, p) + c′u − cu

)
, max
u∈Chp\L

(ω2(u, p)) , max
u∈Chp\L

(
ω3(u, p) + c′u − cu

)
,

max
u∈Chp\L

(ω4(u, p)) , ap}

bp ←
∑
`∈L

c` + bp

Now cp and c′p are no longer functions of L. Therefore, we can safely trim all leaves. This is

the first step in simplifying C to make C ′.

Next, we consider vertices with one child. More generally, let a maximal chain in C be

a maximal path of edges from parents to children where the children have one child, and we

additionally include the descending edge from the final child. Consider some maximal chain

P = (e1, . . . , ek). We will contract this into a single edge eP . Recall that D stores a four-tuple

D(ep) = (ω1(eP), ω2(eP), ω3(eP), ω4(eP)), which is necessary for the maximal chain contractions.

Here, each value represents the value of the MWM along the path under the following restric-

tions: ω1(eP) represents that e1 and ek are matched, ω2(eP) represents e1 is matched but ek is not

matched, ω3(eP) represents e1 is not matched but ek is matched, and ω4(eP) represents neither e1

nor ek are matched. For example, consider when our path is just one edge e1. Matching across e1

yields ω(e1) value, so ω1(eP) = ω(e1). The parent cannot match without the child being matched,

so ω2(eP) = −∞, and similarly ω3(eP) = −∞. If neither parent nor child are allowed to match,

the MWM yields 0 value. Thus D(eP) = (ω(e1),−∞,−∞, 0). This is why setting the edge values

in the dynamic program in this way reduces the problem to MWM.

On a larger path, however, these values might become more general. In our chain, let a child,

parent, and grandparent vertices be c, p and g respectively, with edges ek = (c, p) and ek−1 = (p, g).

Since we are contracting this into an edge e = (g, c), the indices need to represent: matching both g

and c along the path, matching just g along the path, matching just c along the path, and matching

neither g nor c along the path. We can do this in three ways: (1) by matching both c and p along

ek and just matching g along ek−1, (2) by matching just c along ek and matching both p and g

along ek−1, or (3) by matching just c along ek and just g along ek−1. In (1) and (2), p is matched

along one of the paths, thus it cannot match to any of its other children that may have existed

in an earlier iteration of the tree. Thus we can only aggregate c′p\c into this maximum matching,

where c′p\c (resp. cp\c) is the same as c′p (resp. cp\c) but assuming we simply cut p′ from its child

c. In (3), however, p is free to match with another of its children, thus we can use cp. This shows

how to compute part of ω1(eP). We can compute the other three values in a similar way. By using

this process, we find:

22

ω1(ek−1, ek) = max(ω1(ek) + ω2(ek−1) + c′p\c, ω3(ek) + ω1(ek−1) + c′p\c,

ω3(ek) + ω2(ek−1) + cp\c)

ω2(ek−1, ek) = max(ω2(ek) + ω2(ek−1) + c′p\c, ω4(ek) + ω1(ek−1) + c′p\c,

ω4(ek) + ω2(ek−1) + cp\c)

ω3(ek−1, ek) = max(ω1(ek) + ω4(ek−1) + c′p\c, ω3(ek) + ω3(ek−1) + c′p\c,

ω3(ek) + ω4(ek−1) + cp\c)

ω4(ek−1, ek) = max(ω2(ek) + ω4(ek−1) + c′p\c, ω4(ek) + ω3(ek−1) + c′p\c,

ω4(ek) + ω4(ek−1) + cp\c)

Notice that all these values are constant since all edge weights are known and cp\c and c′p\c
must be known since c is p’s only child. Repeatedly applying this to the bottom two adjacent

edges eventually contracts all edges and leaves us with ωi(ek) for all i ∈ [4]. It is not hard to

see that, assuming inductively that all computed weights and c(v) and c′(v) values are correct

throughout this entire process, then the final weight tuple ω(ep) is correct after contracting the

maximal chain. After contracting all maximal chains to form C ′ and then trimming leaves with

the aforementioned process, C ′ becomes a tree with no degree 1 vertices and no internal leaves.

Therefore, if LC′ is the leaves of C ′, |C ′| = O(|LC′ |). Since they are not internal leaves, they must

each have at least one child outside of C ′. Therefore, this is a lower bound on deg(C ′). Thus

|C ′| = O(deg(C ′)) = O(deg(C)).

This shows how to contract C into C ′ such that |C ′| = O(deg(C)) where we still have the

information to compute cv and c′v. Note that this is how we will store cC and c′C in D(C): as a

component C ′ with |C ′| = O(deg(C)) such that the values of cv and c′v in terms of ChC are the

same as they were in the original component C. Since we will refer to this process, we will create

a formal definition for it:

Definition 10. We call the process defined above, for replacing a component C with a component

C ′, the Connected Contraction Process.

As we have shown above:

Proposition 2. The Connected Contraction Process replaces any connected component C with a

component C ′ such that |C ′| = O(deg(C)) and cv and c′v remain the same in C and C ′.

Now we can introduce the version of MWM on degree-weighted trees using the dynamic program

formalization. The weight vector W will simply be the dynamic program information. Note that the

dynamic program stores data on edges as well, however, we can simply store this on the child vertex

of each edge. Therefore, for all v ∈ V with parent p ∈ V , W (v) = (D(v), D(v, p)). To show this

satisfies the degree-weighted property, we will simply need to show that dim(W (v)) = Õ(deg(v)).

Definition 11. Consider a degree-weighted tree T = (V,E,W) where we have W (v) = (D(v), D(v, p))

for all v ∈ V with parent p ∈ V and W (r) = (D(r)) for root r, where all D values are stored as

explained in the Connected Contraction Process. Then the degree weighted maximum weighted

matching on T is equivalent to the problem of solving D(v) for all v ∈ V .

Then by extension of Proposition 1, solving this MWM problem on degree-weighted trees can

be used to solve MWM on standard trees with the aforementioned input W . Now we are ready to

apply our main algorithms.

23

Lemma 5. Given a degree-weighted tree T = (V,E,W), there exists an O(1/ε3) round AMPC

algorithm for finding the value of the maximum weighted matching in T . The memory per machine

is O(nε), and the total memory is Õ(n).

Proof. First, we must describe our connected contracting function C. Consider some connected com-

ponent C ⊆ V . We simply apply the Connected Contraction Process to contract the component and

define the new W (C) weight vector. By Proposition 2, this ensures that dim(W (C)) = Õ(deg(v)),

thus this is a valid weight vector. It is also a valid connected contracting function, since cv and c′v
as a function of ChC does not change.

Next, we describe our sibling contracting function. This will also be quite similar to the Con-

nected Contraction Process. One small nuance is we contract the sibling leaves into a single leaf,

instead of contracting a contiguous component, such as the sibling leaves with its parent. It is not

too hard to see that this can be done by putting a dummy vertex between the sibling leaves and

its parent as an intermediate parent node, so that the parent is now the grandparent (note: this

requires us to ensure matching with the dummy means that the parent will be matched, but this can

be done with our four-tuple edge weights, D(e)). Then we contract the siblings into this dummy

parent to create the new vertex. Again, by Proposition 2, we have a valid sibling contracting

function.

Therefore, by Theorem 2, we can solve MWM on degree-weighted trees in O(1/ε3) AMPC

rounds with O(nε) memory per machine and Õ(n) total memory.

Obviously then, since MWM on trees is a subproblem of MWM on degree-weighted trees, we

can extend this solution to standard trees. Thus far, we have only shown how to compute D(v)

for each v ∈ V . In part, this gives us the value of the MWM of the maximal subtrees rooted at

each vertex. We now show how to reconstruct the actual matching. Note to achieve this result,

each vertex v ∈ V must keep track of a pointer from it to its child that it selects in cv, (i.e., the

single child that is used in the maximization component in the computation of cv, or no pointer if

no child is selected). Therefore, assume each vertex is given such a pointer or possibly no pointer

at all. We will refer to these pointers as child-match pointers.

Lemma 6. Given a tree T = (V,E) along with cv, c′v, and the (possibly null) child-match pointer

for each v ∈ V , we can find a MWM on T in O(1/ε3) AMPC rounds with O(nε) local space and

Õ(n) total space.

Proof. Consider the tree where the edge set is reduced to just the edges along pointers. Since every

vertex has at most one child, this must be a graph of disjoint paths. We know this must contain

the MWM because for any v, the pointer from v designates the child that maximizes cv. In other

words, it points to the child it must match to (if at all) such that the maximal subtree rooted at v

achieves a MWM. Therefore, finding a MWM on this disjoint paths graph will yield a maximum

matching. Note that the root of each path (if viewed as a subforest of the original tree) tells us

if the MWM on that component must match the root to its child. Therefore, a simple sequential

algorithm would iterate over each path from top to bottom, recursively checking if we should match

the root to its child or not (i.e., we do not match if and only if it matched to its parent already or

if it has no child-match pointer). This would find the MWM, but since paths can be O(n) in size,

this is not directly distributable.

If a path is too long, simply segment it using the pre-order decomposition into segments of size

nε. For each segment, use this top-down algorithm to determine the MWM if the segment’s root is

not matched to its parent (i.e., the top-down algorithm as described), or if the root is matched to its

24

parent (i.e., the top-down algorithm without the root vertex). Additionally, for both matches, store

whether or not the last vertex in the segment gets matched. Then we simply contract the segments

and repeat. Note that when we repeat on a path where nodes represent contracted segments, a

super vertex could theoretically be matched above and below and have the matching be valid or

possibly require it not be matched to either edge. This is accounted for by remembering if the last

vertex is matched in the super vertex (for if it is, the descending edge cannot be selected) given

we match the top edge. If we recursively apply this algorithm and then reverse the process, we

will eventually achieve a maximum matching in O(1/ε) additional rounds for a total of O(1/ε3)

rounds.

This is sufficient to prove Lemma 4.

Proof of Lemma 4. Encode MWM on a standard tree T = (V,E) as a degree-weighted tree by

letting W (v) = (cv, c
′
v, 0, 0, w(v, p),−∞,−∞, 0) for every v ∈ V with parent p ∈ V , or W (r) =

(cr, c
′
r, 0, 0) for root r. We know this is equivalent to the standard MWM problem on T . By

Lemma 5, we can evaluate D at each vertex v ∈ V in the required time and space. Then applying

Lemma 6 completes the proof.

Again, this nicely translates into a maximum weighted independent set algorithm. In this case,

instead of storing a 4-tuple of weights on edges based off of different ways to match along a path,

we store such a weight that represents maximum independent sets along paths. This should yield

an extremely similar connected contraction process to solve maximum weighted independent set.

Lemma 7. Maximum weighted independent set on trees can be solved in O(1/ε3) AMPC rounds

with O(nε) local memory and Õ(n) total memory.

4.2 Maximal Matching and Independent Set

In this section, we show how to solve maximal matching and maximal independent set, or MIS,

on trees in O(1/ε2) rounds using Algorithm 1. This is a surprising result because Algorithm 1

only works on trees with degree bounded by nε. We do this by transforming instances of MIS on

general trees into instances of a related problem, which we call maximal independent set with bypass

vertices, on trees of degree bounded by nε. Then we solve this problem using Algorithm 1. This

section will be discussed in terms of MIS however the methods for maximal matching are similar.

Lemma 8. MIS on trees can be solved in O(1/ε2) AMPC rounds with O(nε) local memory and

Õ(n) total memory.

Recall that Algorithm 1 requires an input that is a degree-weighted tree with degree bounded by

nε. To start, we reformulate MIS on trees as to a problem on degree-weighted trees with bounded

degree. Our first goal is to reduce the degree of a tree and still be able to solve MIS. We define the

following problem:

Definition 12. Consider a tree T = (V,E) where some vertices are “standard” vertices and some

vertices are “bypass” vertices. Let S ⊆ V be a set of vertices such that every standard vertex with a

child in S cannot be in S and every bypass vertex is in S if and only if it has a child in S. If there

exists no vertex set S′ ⊆ V \ S with at least one standard vertex such that S ∪ S′ satisfies these

two properties, then S is a maximal independent set with bypasses. We denote this problem

MISB.

25

Viewing this simply as a tree with two types of vertices, this is quite similar to the MIS

problem. If we had no bypass vertices, this would be, in fact, MIS. A bypass vertex b in a sense

represents its children. If any of its children are in the set and b’s parent is standard, then b’s

parent cannot be in the set. If b’s parent is a bypass vertex, then it simply passes this property

onto its parent. Additionally, note we require the addition of standard vertices to the set to show

it is not independent. Therefore, we do not care about how many bypass vertices are in the set.

We will say that the size of an independent set with bypasses is the number of standard vertices in

it.

Next, we show that MIS on general trees can be altered to work on trees with degree bounded

by nε by considering bypass vertices. Note in this theorem when we say “almost complete nε-ary

tree on x children”, we mean the resulting tree if you greedily filled an nε-ary tree in a breadth-first

manner until it had x children.

For notation, on a tree T with standard vertices ST , we say that BA for a set of vertices A ⊆ ST
is the set of bypass vertices b such that there exists a descending path from b to some a ∈ A such

that a is the only standard vertex on the path.

Lemma 9. Consider a tree T . There exists a tree T ′ = (V ′, E′) with max degree bounded by nε

and set of standard vertices ST ′ ⊆ V ′ such that I ′ ⊆ V ′ is an MISB on T ′ implies I is an MIS on

T where I ′ = I ∪ BI . Additionally, |T ′| = O(n) and T ′ can be constructed in O(1/ε) rounds with

O(nε) local memory and Õ(n) total space.

Proof. Root T arbitrarily. Transform T into T ′ = (V ′, E′) as follows: for every v ∈ T with set of

children Chv ⊂ V where |Chv| > nε, replace v with an almost complete nε-ary tree with v at the

root, bypass vertices {bi}i∈[k−1] that are the rest of the internal vertices, and Chv as the leaves.

Let I ′ ⊆ V ′ be any MISB on T ′ and let I = I ′ ∩ST ′ where ST ′ is the set of standard vertices in T ′.

Obviously, T ′ is a degree-weighted tree with degree bound nε, ST ′ = V , and I ′ = I ∪BI .
Since the size of a tree is within a factor of 2 of its number of leaves and T ′’s creation clearly

creates no leaves, |T ′| = O(|T |) = O(n). Additionally, note that the height of each tree replacing

high degree vertices is at most lognε(n) = 1/ε. In order to implement this transformation, for each

node that must be expanded into a tree, partition its children into groups of at most nε and put

each group on a machine. In each machine, create a bypass node as the parent of all children in

the group. Recurse on the newly created bypass nodes until all nodes can fit on one machine, at

which point we can link them directly to parent v. This requires O(1/ε) rounds, as this is the the

height of the tree. Obviously, it satisfies the space constraints.

Assume I ′ is MISB on T ′. We show I is an independent set on T . Consider any two vertices

u, v ∈ V where u is the child of v and u ∈ I (and thus, u ∈ I ′). By the construction of T ′, u, v ∈ ST ′ ,

v is an ancestor of u in T ′, and there is a set of bypass nodes {bi}i∈[k] for some k such that there

is a path from u to v, P = (u, b1, . . . , bk, v). Since u ∈ I ′ and b1 is a bypass vertex, b1 ∈ I ′. We

can continue this line of reasoning to show bk ∈ I ′. So v /∈ I ′ since I ′ is independent (with bypass

nodes). Therefore, I is an independent set on T .

Next, we show I is maximal on T . Assume for contradiction there is some v ∈ T \ I such that

I ∪ {v} is an independent set on T . Then v ∈ ST ′ , and v /∈ I ′. Let Tv be the tree v was expanded

into, or just the tree of v and its children if it was not expanded. Tv’s leaves are Chv, which are

not in I but are all in ST ′ , and thus they cannot be in I ′. We now show that all bypass vertices

b ∈ Tv are not in I ′ by inducting on their height. At a height of 1 (i.e., with only leaf-children), b’s

children must all be in Chv, and therefore are not in I ′. Thus, by the rules of bypass vertices in

the independent set, b /∈ I ′. For any higher up b, given any lower down bypass vertex is not in I ′,

26

then all of b’s children must also not be in I ′, so b /∈ I ′. This proves that all vertices in Tv \ {v} are

not in I ′.

Finally, if v has a parent p in T , then we know either p is v’s parent in T ′, in which case since

p /∈ I and p ∈ ST ′ then p /∈ I ′, or v is a leaf in the expanded tree of p, in which case v’s parent is a

bypass node. In either case, p cannot interfere with v being put into I ′. Thus, we have shown that

I ′ ∪ {v} 6= I ′ is independent. Thus, I ′ was not maximal. This is a contradiction, meaning I must

be maximal on T .

Next, we define a dynamic program to solve MISB. Call this dynamic program D. It will work

bottom-up. For each v ∈ V , D will have one bit to determine if v is in the MISB or not. For each

standard leaf, include it in the MISB. For each bypass leaf, do not include it in the MISB. For

each standard internal node v whose children have been evaluated, put v in the MISB if none of

its children are in the MISB. For each bypass internal node B whose children have been evaluated,

put b in the MISB if any of its children are in the MISB. This is a very simple dynamic program

that clearly solves MISB.

However, we must now translate this to degree-weighted trees such that we can contract con-

nected components and still solve this problem. We will use a modified dynamic program much

like the one from the previous section, simplified, and with bypass vertices accounted for. We will

use the function B(v) which is 1 if v is bypass and 0 if v is standard.

Definition 13. Let D be the MISB dynamic table on a given tree T = (V,E) that acts on both

vertices and edges. Then D(v) = (cv, av) and D(e) = (ω1(e), ω2(e)) where:

• cv is a function that computes whether or not v is in the MISB

• av is a constant value

• ω1(e) and ω2(e) are binary values on edge e

and more specifically:

cv =B(v)av
∏

u∈Chv

cv,u + (1−B(v))

1− av
∏

u∈Chv

cv,u

for cv,u = cuω1(u, v) + (1− cu)ω2(u, v).

It is not too hard to see that if av = 1 for all v ∈ V and ω1(e) = 1 and ω2(e) = 0 for all e ∈ E,

this reduces to an implementation of our greedy algorithm.

Proposition 3. Consider a tree T = (V,E). The dynamic program D from Definition 13 finds the

bottom-up greedy MISB when ω1(e) = 1 and ω2(e) = 0 for all e ∈ E and av = 1 for all v ∈ V . In

other words, for all v ∈ V , cv from D(v) indicates whether or not v is in the MISB on Tv.

Notice, however, that in the greedy algorithm, if v is in the MISB of Tv, then it is also in the

MISB of T . Therefore, our final output has our entire MISB solution, which is in contrast to the

MWM solution, where we still had to compute the matching itself.

Consider a connected component C with root v. To contract this, we will do a simplified version

of the Connected Contraction Process from Definition 10. Note in MIS, instead of handling cv and

c′v we just have a single bit denoting if v is in the MIS or not. For consistency, we call this bit

27

cv. We need to compress C into C ′ in the same way (i.e., removing internal leaves and contracting

maximal chains) and show how to update the values of D.

When removing internal leaves L, we can rewrite cv as:

cv = B(v)av
∏

u∈Chv\L

cv,u ·
∏
`∈L

`v,u + (1−B(v))

1− av
∏

u∈Chv\L

cv,u ·
∏
`∈L

`v,u

As in MWM,

∏
`∈L `v,u is a constant. So we can start with av = 1 and update it as av ←

av ·
∏
`∈L `v,u.

Next, we consider contracting maximal chains. Again, we need to label edges with a tuple-based

weight, this time a two-tuple: D(e) = (ω1(e), ω2(e)). Consider our maximal chain P = (e1, . . . , ek)

with corresponding vertices (v1, . . . , vk+1) which we would like to replace with ep. In this problem,

ω1(eP) indicates whether or not v2 is in the bottom-up MISB given vk+1 is in the MISB. On the

other hand, ω2(eP) indicates whether or not v2 is in the bottom-up MISB given vk+1 is not in the

MISB. This will help us decide whether or not v1 can be in the MISB. As before, consider child,

parent, and grandparent vertices c, p, and g respectively, such that c = vk+1, p = vk, and g = vk−1.

Assume c is in the greedy MISB. Then p is in the MISB if and only if w1(ek) = 1 and p is able to be

in the MIS according to the rest of the computation on any other children it may have had, which

is cp\c as similarly denoted in the previous section. Using this and similar logic, we can update

edge weights as follows:

ω1(ek−1, ek) =ω1(ek)cp\c

ω2(ek−1, ek) =ω2(ek)cp\c

As before, these are all known constants, and we can repeatedly apply this to find ω1(eP)

and ω2(eP). Thus, we have shown as before that we can contract C into a tree C ′ such that

|C ′| = O(deg(C)) using this simplified Connected Contraction Process. As before:

Proposition 4. This simplified Connected Contraction Process replaces any connected component

C with a component C ′ such that |C ′| = O(deg(C)) and cv remains the same in C and C ′.

Now we introduce the degree-weighted problem. As before, we let edge weights be stored by

the associated child endpoint.

Definition 14. Consider a degree-weighted tree T = (V,E,W) where we have W (v) = (D(v), D(v, p))

for all v ∈ V with parent p ∈ V and W (r) = (D(r)) for root r, where all D values are stored as

explained in the simplified Connected Contraction Process. Then maximum independent set

with bypass vertices on T is equivalent to the problem of solving D(v) for all v ∈ V .

By Proposition 4 and Lemma 9, solving MISB on degree-weighted trees can be used to solve

MIS on standard trees with the aforementioned input W . Now we apply the main algorithms.

Proof of Lemma 8. All we need to do is introduce a connected contracting function C. For any

component C ⊆ V , to compute C(C), apply the simplified Connected Contraction Process to con-

tract the component and get W (C). By Proposition 4, this ensures that dim(W (C)) = Õ(deg(v)),

thus this is a valid weight vector. It is also a valid connected contracting function since cv does

not change as a function of ChC . Therefore, by Theorem 1, we can solve MISB on degree-weighted

trees in O(1/ε2) AMPC rounds with O(nε) memory per machine and Õ(n) total memory. By the

efficient transformation from Lemma 9, this can be used to solve MIS on normal trees with the

same complexities.

28

A few simple modifications yields the same result for maximal matching.

Lemma 10. Maximal matching on trees can be solved in O(1/ε2) AMPC rounds with O(nε) local

memory and Õ(n) total memory.

4.3 Dynamic Expressions and Tree Isomorphism

Miller and Reif [MR91] discuss how tree contractions can be used to probabilistically solve tree

isomorphism. Let T and T ′ be rooted trees on n nodes with tree height h (it is not hard to see that

height can be computed by tree contractions in O(1/ε2) AMPC rounds by expanding high-degree

vertices into nε-ary trees with dummy nodes that don’t add to the height). T and T ′ are isomorphic

if there is a mapping between their vertices φ : V → V ′ such that if u is a child of v in T , then

φ(u) is a child of φ(v).

A useful way to represent trees when considering tree isomorphism is as their canonically as-

sociated polynomials. On a tree T with height h, we introduce h variables x1, . . . , xh to define

polynomials in T . For instance, for any vertex ` ∈ L(T), let the polynomial associated with ` be

Q` = 1. For any internal node v of height hv, we let Qv = Πu∈Γ(v)(xhv −Qu). For some parameter

α, then, their algorithm, called Randomized Tree Isomorphism, is as follows:

1. If we are given a list of primes between hnα+1 and 2hnα+1, then pick a prime in that range

from the given list. Otherwise, pick a random integer in the range (hnα+1)2 ≤ m ≤ 2(hnα+1)2.

2. For each node v of T or T ′, assign a polynomial Qv to v. This is left in terms of the polynomials

of its children.

3. Assign to each xi a random value between 1 and m.

4. Evaluate QT and QT ′ using dynamic expression evaluation and return w and w′, respectively.

5. If w 6= w′, output “not isomorphic”, else, output “isomorphic”.

They show the following:

Theorem 5 (Miller & Reif [MR91]). In the PRAM model, Randomized Tree Isomorphism tests tree

nonisomorphsim in O(log n) time with n/ log n processors with probability of error less than or equal

to 1/2. If a table of primes is given, then the procedure works with a probability of error at most

1/nα.

Their work also extends to canonical labelings for trees. We could extend our work in a similar

way, but for the sake of only highlighting main results, we restrict our focus to tree isomorphism.

We will implement this algorithm in AMPC and show:

Lemma 11. Given two trees T and T ′ on n nodes with height h, there exists an O(1/ε2) round low-

memory AMPC algorithm for determining nonisomorphism between T and T ′ with error probability

less than 1/nα for some α when given access to a table of primes, and an error probability less than

1/2 otherwise. The memory per machine is O(nε), and the total memory is Õ(n).

However, to show that this implementation works, we must describe how to execute dynamic

expression evaluation. In this problem we are given a string of length n which may include numbers,

operators +, −, ×, ÷, and ∗∗ (exponent), and parentheses. It must be a valid arithmetic expression.

An example includes “2 + 5− (3 + 2× 6)− 9”.

29

Lemma 12. Given a n-length string-based representation of an arithmetic sequence involving +,

−, ×, and ÷ operators, there exists an O(1/ε2) round low-memory AMPC algorithm for evaluating

the expression. The memory per machine is O(nε), and the total memory is Õ(n).

Proof. The string preprocessing methods (i.e., forming a tree structure for expression evaluation)

are all heavily inspired by Bar-on et al. [BV85], leveraging MPC to increase performance. We

describe the process introduced by Bar-on et al. here. By extending their proof of correctness

and showing an equivalent yet faster implementation in MPC, we can achieve our result. Their

algorithm works as follows, modified to work efficiently in MPC:

1. Reduce the input string into a simple expression, where all operations not in parentheses have

the same precedence, and all maximal expressions in parentheticals are also simple:

(a) For each + and − operator, insert two left parentheses to its right and two right paren-

theses to its left.

(b) For each ∗ and÷ operator, insert one left parenthesis to its right and one right parenthesis

to its left.

(c) For each left (resp. right) parenthesis, insert two additional left (resp. right) parethe-

ses to its right (resp. left). Add two left parentheses to the beginning and two right

parentheses to the end.

2. Match parentheses (modified for the MPC model):

(a) Partition the string into chunks of size nε and allocate one chunk to each machine.

(b) On each machine, match all instances of “()” and remove them iteratively until none

exist. The remaining string on any machine must be a sequence of right parentheses

followed by left parentheses. Replace each sequence by a single appropriate parenthesis

and the number of them.

(c) Repeat this process. When matching appropriate right and left parentheses when they

have an associated count, simply decrement the number under each parenthesis. At zero,

remove the parenthesis.

3. For each left (resp. right) parenthesis, delete itself if there is a left (resp. right) parenthesis

to its right (resp. left) and their corresponding matched parentheses are adjacent.

4. Assign a processor to each subexpression (at this point, this is equivalent to assigning one

to each pair of matched parentheses). The root is either the last or first operator, so find

each and determine which is the root (this depends on operator precedence). Next, assign a

processor to each operator. Look to adjacent operators and use the operator precedence to

connect operators by a directed edge to denote which operator is the parent of the other.

Step 1 can clearly be done in constant rounds, as each substep requires constantly many local

operations. In Step 2 in MPC, we are iteratively reducing partitions of size nε to constant size.

Thus this requires O(1/ε) rounds. Step 3, much like Step 1, is clearly local and requires O(1)

rounds. For Step 4, Bar-on et al. show that this can be done in O(1) depth in PRAM by cleverly

using the pointers between matched parentheses. We too can do this, and O(1) depth in PRAM

corresponds to O(1) rounds in MPC. This takes a total of O(1/ε) rounds. It results in a binary

tree with leaves that are values and internal nodes that are operators that correctly represents the

order of operations.

30

To solve the tree, we use our tree contraction algorithm with data W (v) storing the entire

component with any solved vertices inputted into their parent. By extending our results from the

previous section, we know that components C that have no internal leaves or vertices with exactly

one child are of the proper size to be stored in W (C). This defines our compression function and

allows us to utilize Algorithm 1, which works on our tree because it is binary. Thus we can compute

dynamic expression evaluation in O(1/ε2) rounds.

We can use this for our main lemma of the subsection.

Proof of Lemma 11. We show this by implementing Randomized Tree Isomorphism with the desired

AMPC complexity. Step 1 can clearly be done in O(1) rounds. Step 2 additionally only requires

O(1/ε) rounds, as a vertex simply looks to its children and writes out its polynomial in terms of

them. It requires O(1/ε) instead of O(1) as, with nε local memory and possibly at most O(n)

children, a single polynomial may require O(nε) time to write. Step 3 also obviously takes O(1)

rounds. Finally, for Step 4, we simply defer to Lemma 12 to show this can be done in O(1/ε2)

rounds. Thus this takes a total of O(1/ε2) rounds.

References

[ABB+19] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and

Cliff Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive

graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete,

pages 1616–1635, 2019.

[ABH+04] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Shan Leung Mav-

erick Woo. Dynamizing static algorithms, with applications to dynamic trees and his-

tory independence. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on

Discrete, pages 531–540, 2004.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for δ + 1 vertex

coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete,

pages 767–786, 2019.

[AG15] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual

primal algorithms for maximum matching under resource constraints. In Proceedings

of the 27th ACM on Symposium on Parallelism in Algorithms, pages 202–211, 2015.

[AKL+89] Mikhail J. Atallah, S. Rao Kosaraju, Lawrence L. Larmore, Gary L. Miller, and Shang-

Hua Teng. Constructing trees in parallel. In Proceedings of the ACM Symposium on

Parallel Algorithms and Architectures, 1989.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.

Parallel algorithms for geometric graph problems. In Symposium on Theory of Com-

puting, pages 574–583. ACM, 2014.

[ASS+18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Par-

allel graph connectivity in log diameter rounds. In 59th IEEE Annual Symposium on

Foundations of Computer Science, pages 674–685. IEEE Computer Society, 2018.

31

[ASW19] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for

finding well-connected components in sparse graphs. In Proceedings of the 2019 ACM

Symposium on Principles of Distributed, pages 461–470, 2019.

[ASZ19] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log diameter rounds algorithms

for 2-vertex and 2-edge connectivity. In 46th International Colloquium on Automata,

Languages, and Programming, pages 14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2019.

[BBD+17] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi

Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clus-

tering: Hierarchical clustering at scale. In Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems, pages

6864–6874, 2017.

[BBD+18a] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi

Hajiaghayi, and Vahab S. Mirrokni. Brief announcement: Mapreduce algorithms for

massive trees. In 45th International Colloquium on Automata, Languages, and Pro-

gramming, pages 162:1–162:4, 2018.

[BBD+18b] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi

Hajiaghayi, and Vahab S. Mirrokni. Massively parallel dynamic programming on trees.

CoRR, 2018.

[BBD+19] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Moham-

madTaghi Hajiaghayi, Richard M Karp, and Jara Uitto. Massively parallel computa-

tion of matching and mis in sparse graphs. In ACM SIGACT, pages 481–490, 2019.

[BDD+16] Hans L. Bodlaender, P̊al Grøn̊as Drange, Markus S. Dregi, Fedor V. Fomin, Daniel

Lokshtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth.

SIAM J. Comput., pages 317–378, 2016.

[BDE+19a] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab Mir-

rokni, and Warren Schudy. Massively parallel computation via remote memory access.

In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages

59–68, 2019.

[BDE+19b] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab S.

Mirrokni. Near-optimal massively parallel graph connectivity. In 60th IEEE Annual

Symposium on Foundations of Computer Science, pages 1615–1636, 2019.

[BDE+20] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S. Mir-

rokni, and Warren Schudy. Parallel graph algorithms in constant adaptive rounds:

Theory meets practice. Proc. VLDB Endow., pages 3588–3602, 2020.

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel,

and Hamed Saleh. Streaming and massively parallel algorithms for edge coloring. In

27th Annual European Symposium on Algorithms, pages 15:1–15:14, 2019.

32

[BEG+18] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi,

and Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quan-

tum and mapreduce. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-

sium on Discrete, pages 1170–1189, 2018.

[BHH19] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially

faster massively parallel maximal matching. In 60th IEEE Annual Symposium on

Foundations of Computer Science, pages 1637–1649, 2019.

[BV85] Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a computation tree form.

ACM Trans. Program. Lang. Syst., pages 348–357, 1985.

[CLM+18] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak,

and Piotr Sankowski. Round compression for parallel matching algorithms. In Pro-

ceedings of the 50th Annual ACM SIGACT Symposium on Theory, pages 471–484,

2018.

[CMT20] Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adap-

tive massively parallel computation. In SPAA ’20: 32nd ACM Symposium on Paral-

lelism in Algorithms and Architectures, pages 141–151, 2020.

[CRP+10] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry,

Robert Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel

pipelines. In Benjamin G. Zorn and Alexander Aiken, editors, Proceedings of the 2010

ACM SIGPLAN Conference on Programming Language Design and Implementation,

pages 363–375, 2010.

[CV88] Richard Cole and Uzi Vishkin. The accelerated centroid decomposition technique for

optimal parallel tree evaluation in logarithmic time. Algorithmica, pages 329–346, 1988.

[DNP86] Eliezer Dekel, Simeon Ntafos, and Shie-Tung Peng. Parallel tree techniques and code

optimization. In Filia Makedon, Kurt Mehlhorn, T. Papatheodorou, and P. Spirakis,

editors, VLSI Algorithms and Architectures, pages 205–216, 1986.

[Fou] Apache Software Foundation. Hadoop. https://hadoop.apache.org/.

[GGJ20] Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved mpc algorithms for mis,

matching, and coloring on trees and beyond. arXiv preprint arXiv:2002.09610, 2020.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt

Rubinfeld. Improved massively parallel computation algorithms for mis, matching, and

vertex cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed,

pages 129–138, 2018.

[GK96] Michael T. Goodrich and S. Rao Kosaraju. Sorting on a parallel pointer machine with

applications to set expression evaluation. J. ACM, pages 331–361, 1996.

[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for

massively parallel computation from distributed lower bounds. In 60th IEEE Annual

Symposium on Foundations of Computer Science, pages 1650–1663, 2019.

33

[GM87] Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator in planar

graphs. In 28th Annual Symposium on Foundations of Computer Science, pages 238–

248, 1987.

[GMT88] H. Gazit, Gary L. Miller, and ShangHua Teng. Optimal tree contraction in an EREW

model. In Concurrent Computations: Algorithms, Architecture and Technology, pages

139–156, 1988.

[GR89] Alan Gibbons and Wojciech Rytter. Optimal parallel algorithms for dynamic expres-

sion evaluation and context-free recognition. Inf. Comput., page 32–45, 1989.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications

in massively parallel computation and centralized local computation. In SODA, pages

1636–1653. SIAM, 2019.

[GV06] Martin Grohe and Oleg Verbitsky. Testing graph isomorphism in parallel by playing

a game. In Automata, Languages and Programming, 33rd International Colloquium,

pages 3–14, 2006.

[HK20] MohammadTaghi Hajiaghayi and Marina Knittel. Matching affinity clustering: Im-

proved hierarchical clustering at scale with guarantees. In Proceedings of the 19th

International Conference on Autonomous Agents, pages 1864–1866, 2020.

[HLL18] Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algo-

rithms in the mapreduce model. In Proceedings of the 30th on Symposium on Paral-

lelism in Algorithms, pages 43–52, 2018.

[HSS19] MohammadTaghi Hajiaghayi, Saeed Seddighin, and Xiaorui Sun. Massively paral-

lel approximation algorithms for edit distance and longest common subsequence. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 1654–1672. SIAM, 2019.

[HSSS21] MohammadTaghi Hajiaghayi, Hamed Saleh, Saeed Seddighin, and Xiaorui Sun. String

matching with wildcards in the massively parallel computation model. In SPAA, pages

275–284, 2021.

[JL16] Artur Jez and Markus Lohrey. Approximation of smallest linear tree grammar. Inf.

Comput., pages 215–251, 2016.

[KLM+14] Raimondas Kiveris, Silvio Lattanzi, Vahab S. Mirrokni, Vibhor Rastogi, and Sergei

Vassilvitskii. Connected components in mapreduce and beyond. In Proceedings of the

ACM Symposium on Cloud Computing, pages 18:1–18:13, 2014.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation

for mapreduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 938–948, 2010.

[LMOS20] Jakub Lacki, Slobodan Mitrovic, Krzysztof Onak, and Piotr Sankowski. Walking ran-

domly, massively, and efficiently. In Proccedings of the 52nd Annual ACM SIGACT

Symposium on Theory, pages 364–377, 2020.

34

[MR85] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In 26th

Annual Symposium on Foundations of Computer Science, pages 478–489, 1985.

[MR87] Gary L. Miller and Vijaya Ramachandran. A new graph triconnectivity algorithm and

its parallelization. In Proceedings of the 19th Annual ACM Symposium on Theory of

Computing, pages 335–344, 1987.

[MR89] Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. Adv.

Comput. Res., pages 47–72, 1989.

[MR91] Gary L. Miller and John H. Reif. Parallel tree contraction, part 2: Further applications.

SIAM J. Comput., pages 1128–1147, 1991.

[MRK88] Gary L. Miller, Vijaya Ramachandran, and Erich Kaltofen. Efficient parallel evaluation

of straight-line code and arithmetic circuits. SIAM J. Comput., pages 687–695, 1988.

[NS19] Danupon Nanongkai and Michele Scquizzato. Equivalence classes and conditional hard-

ness in massively parallel fcomputations. In 23rd International Conference on Princi-

ples of Distributed Systems, pages 33:1–33:16, 2019.

[PPTT15] Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and Nikos

Triandopoulos. Practical authenticated pattern matching with optimal proof size.

Proc. VLDB Endow., pages 750–761, 2015.

[RVW16] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits:

(on lower bounds for modern parallel computation). In Proceedings of the 28th ACM

Symposium on Parallelism in Algorithms, pages 1–12, 2016.

[YV18] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hard-

ness for single-linkage clustering under `p distances. In Proceedings of the 35th Inter-

national Conference on Machine Learning, pages 5596–5605, 2018.

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.

Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark:

a unified engine for big data processing. Commun. ACM, pages 56–65, 2016.

35

	1 Introduction
	1.1 The AMPC Model
	1.2 Our Contributions
	1.3 Paper Outline

	2 Preliminaries
	2.1 Tree Contractions and Contracting Functions
	2.2 Preorder Decomposition

	3 Constant-round Tree Contractions in AMPC
	3.1 Contractions on Degree-Bounded Trees
	3.2 Generalized -Tree-Contractions
	3.3 Simulating 2-tree-contraction in O(1) AMPC rounds
	3.4 Reconstructing the Tree for Linear-sized Output Problems

	4 Applications
	4.1 Maximum Weighted Matching and Independent Set
	4.2 Maximal Matching and Independent Set
	4.3 Dynamic Expressions and Tree Isomorphism

