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Abstract—Gene trees can differ from species trees due to a variety of
biological phenomena, the most prevalent being gene duplication, hori-
zontal gene transfer, gene loss, and coalescence. To explain topological
incongruence between the two trees, researchers apply reconciliation
methods, often relying on a maximum parsimony framework. However,
while several studies have investigated the space of maximum parsi-
mony reconciliations (MPRs) under the duplication-loss and duplication-
transfer-loss models, the space of MPRs under the duplication-loss-
coalescence (DLC) model remains poorly understood. To address this
problem, we present new algorithms for computing the size of MPR space
under the DLC model and sampling from this space uniformly at random.
Our algorithms are efficient in practice, with runtime polynomial in the
size of the species and gene tree when the number of genes that map to
any given species is fixed, thus proving that the MPR problem is fixed-
parameter tractable. We have applied our methods to a biological data set
of 16 fungal species to provide the first key insights in the space of MPRs
under the DLC model. Our results show that a plurality reconciliation, and
underlying events, are likely to be representative of MPR space.

Index Terms—phylogenetics, reconciliation, coalescence, incomplete
lineage sorting, gene duplication and loss

1 INTRODUCTION

Understanding the evolutionary history of genes can offer
insight into how new genes and functions arise in species [18],
[19], [24], [29] and how gene losses shape gene families [23].
In phylogenetics, these histories are often understood by
comparing two kinds of phylogenetic trees: the species tree
that depicts the evolutionary relationship of a set a species,
and the gene tree that depicts how a set of genes within
these species have evolved. The gene tree can be thought
of as evolving “inside” the species tree, and the goal of
reconciliation methods is to infer this nesting.

Reconciliation methods rely on underlying evolutionary
models in that topological incongruence between the gene
and species tree must be accounted for using only the
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biological events allowed by the model. Among the most
well-studied models are the duplication-loss (DL) model [6],
[7], [13], [14], [27], [30], [32], [46], which allows for gene
duplication and gene loss; the duplication-transfer-loss (DTL)
model [1], [8], [9], [12], [36], [39], which considers horizontal
gene transfers as well; and the multispecies coalescent (MSC)
model [21], [31], [42], [45], which allows for incomplete
lineage sorting (ILS) through deep coalescence.

For eukaryotic species, when a gene family evolves over
sufficiently large evolutionary distances, its history can often
be explained through the DL model alone. However, for
smaller evolutionary distances or large population sizes,
the MSC model must be taken into account. Several recent
methods have considered reconciliations under a combined
duplication-loss-coalescence (DLC) model, which allows for
duplication, loss, and coalescence. For example, Rasmussen
and Kellis [33] introduced a generative DLCoal model
and associated algorithm DLCoalRecon for inferring the
maximum a posteriori reconciliation. While DLCoalRecon was
shown to improve over the duplication-loss model alone, it
relies on a heuristic search and is highly parameterized,
making it difficult to use in practice. Building on the
DLCoal model, we previously introduced a new structure
for representing reconciliations and an algorithm DLCpar for
inferring a maximum parsimonious reconciliation (MPR) [44].
DLCpar achieves accuracy comparable to DLCoalRecon at
reduced run time and with fewer parameters, making it more
applicable to a broad range of species and large data sets.

However, adopting a parsimony approach presents its
own set of challenges. For the DL model, assuming that loss
events have a positive cost, the MPR is always unique [14],
but for more general models, there may exist multiple MPRs
for a given gene tree and species tree for a fixed assignment
of event costs. For some insight, we can look to reconciliation
under the DTL model. While probabilistic methods exist
for DTL reconciliation [38], most formulations rely on a
maximum parsimony framework [1], [8], [9], [11], [12], [17],
[36], [39]. Under this model, the number of MPRs can grow
exponentially with the size of the gene tree and the species
tree [2], and consequently, efficient algorithms have been
developed to summarize this space [2], [15], [20], [22], [26],
[35].

But the space of MPRs under the DLC model remains
poorly understood. DLCpar returns only a single random
MPR. That is, we lack information about the size of the MPR
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space, and furthermore, we do not know whether an inferred
MPR is representative of this space, hindering downstream
analyses. To address these shortcomings, we investigate the
solution space of MPRs under the DLC model. Specifically,
we have extended the DLCpar algorithm to (1) count the
number of different, equally optimal reconciliations, and
(2) sample the space of optimal reconciliations uniformly at
random. Additionally, we show how to use these multiple
samples to analyze the robustness of reconciliations and
underlying events. These updates are part of the DLCpar
software, which is freely available for download at https:
//www.cs.hmc.edu/∼yjw/software/dlcpar.

We previously showed that the MPR problem for the
DLC model is NP-complete and even hard to approximate
(APX-complete), and it is therefore unlikely that polynomial-
time algorithms or approximation schemes exist for this
problem [3]. Thus, unsurprisingly, the DLCpar algorithm
has worst-case exponential runtime. However, we prove
that the reconciliation problem is fixed-parameter tractable
by showing that the runtime of DLCpar (including the
augmentations described above) is polynomial in the size
of the species and gene tree when the number of genes that
map to any given species is fixed.

To demonstrate the utility of our approach, we have
applied our algorithm to a biological data set of 16 fungal
species [41]. We show that while the majority of gene families
have a unique optimal reconciliation, there exist families with
millions of optimal reconciliations. But even in the presence
of multiple optima, the underlying events are often well-
supported, with these results holding across a variety of
event cost settings.

To summarize, the contributions of this paper are signifi-
cant extensions to the DLCpar algorithm and analysis that
demonstrates DLCpar is efficient except when the two trees
are extremely incongruent. By applying these extensions to
a biological data set, we present new insights into both the
size of MPR space and the support for underlying events in
this space.

2 BACKGROUND

We start by reviewing prior work on DLC reconciliations.

2.1 A Unified Model of Gene Family Evolution

While several DLC models exist, in this work, we rely on the
DLCoal model developed by Rasmussen et al. [33].

To understand the interactions of duplications, losses,
and coalescence in this model, we consider the gene family
illustrated in Fig. 1A. In this example, a duplication occurs
in one chromosome along the branch ancestral to species
B and C, creating a new locus (“locus 2”) in the genome
distinct from the original locus (“locus 1”). At the new locus,
this duplicate evolves within the population according to
the Wright-Fisher process [10], [28], [31], [34], [37] until it
eventually fixates. Thus, the sampled genomes of A, B, and
C contain genes a1, b1, b2, c1, and c2, and their phylogenetic
tree is a “traceback” in the combined Wright-Fisher processes
of loci 1 and 2. Note that all gene lineages for the duplicate
(daughter) locus are forced to completely coalesce at the root
of the locus 2 tree, allowing only one lineage to traceback
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Fig. 1. Gene family evolution and the labeled coalescent tree.
(A) The unified model DLCoal model combines the duplication-loss and
multispecies coalescent models. In this example, a duplication occurs
in one chromosome and creates a new locus, “locus 2,” in the genome.
At locus 2, the daughter duplicate (black dots) competes with the null
allele (white dots) until it eventually fixates. A gene tree is a “traceback”
in this combined process. Additionally, the red and yellow trees form
an intermediate locus tree (distinct from the gene tree and species
tree) that describes how loci are created and destroyed. (B) Evolution
under the DLCoal model is represented using the labeled coalescent
tree (LCT). (C) The LCT consists of four components: species mapM,
locus set L, locus map L, and partial order O. Sets mother loci(·) of
loci and N(·, ·) and D(·, ·) of nodes necessary for the partial order are
also shown. (D) Evolutionary events are depicted in the LCT. Except
for speciation, evolution within a single species tree branch is shown.
(E) An alternative scenario is presented for evolution in species m2. The
new partial order induces an extra lineage at the time of the duplication.
[Figure and caption adapted with permission from Wu et al. [44] and
Rasmussen and Kellis [33].]

into the locus 1 tree. Furthermore, the duplication creates
an additional lineage within the locus 1 tree that must
coalesce, creating another opportunity for deep coalescence.
A similar process allows for gene loss (not shown). When a
loss occurs, a single gene is deleted from one chromosome
of the population, and this deletion drifts until it either fixes
or goes extinct.

For the example, notice that the red and yellow trees
representing loci 1 and 2 form an intermediate locus tree that
is distinct from the gene tree and species tree and describes
how loci are created and destroyed. To disentangle the effects
of duplication-loss and coalescence, we can think of the gene
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tree as evolving “inside” the locus tree, with multispecies
coalescent processes within each locus, and we can think of
the locus tree as evolving “inside” the species tree according
to a duplication-loss process. As the gene tree of this model
represents the history of gene sequences as they coalesce
within the locus tree, we will use the term coalescent tree
and gene tree interchangeably throughout the remainder of
this manuscript.

2.2 DLC Reconciliation

Next, we review our previous work that formalized the
concept of reconciliations and maximum parsimony reconcil-
iations under the DLC model [44].

Throughout this work, the term tree refers to a rooted
binary tree. Given a tree T , let V (T ) denote its node set and
E(T ) denote its branch set. Let L(T ) ⊂ V (T ) denote its leaf
set, I(T ) = V (T ) \L(T ) denote its set of internal nodes, and
r(T ) ∈ I(T ) denote its root node. For node v ∈ V (T ), let
c(v) denote its set of children, p(v) denote its parent, and
e(v) denote the branch (p(v), v). Define ≤T (<T ) to be the
partial order on V (T ), where given two nodes u and v of
T , u ≤T v (u <T v) if and only if u is on the unique path
between r(T ) and v (and u 6= v). The partial order ≥T (>T )
is defined analogously. In such a case, u is said to be a (strict)
ancestor of v and v a (strict) descendant of u.

Let a species tree S depict the evolutionary history of a set
of species, and let a gene tree G depict the evolutionary history
of a set of genes sampled from these species. To compare a
gene tree with a species tree, let a leaf map Le : L(G)→ L(S)
label each leaf of the gene tree with the leaf of the species
tree from which the gene was sampled.

The labeled coalescent tree (Fig. 1B,C) formalizes the notion
of a reconciliation in the DLC model.

Definition 2.1 (Labeled Coalescent Tree). Given G, S, and
Le, a labeled coalescent tree (LCT) for 〈G,S, Le〉 is a tuple
〈M,L,L,O〉, where
• M : V (G) → V (S) is a species map that maps each

node of G to a node of S.
• L ⊂ N is a locus set, a finite set of natural numbers, each

representing a locus that has evolved within the gene
family.

• L : V (G)→ L is a locus map that maps each node of G
to a locus in L.

• O is a partial order on V (G) that represents the relative
times of nodes. For each species node s ∈ V (S), let
mother loci(s) ⊂ L be the set of loci that yield a new
locus in species s:

mother loci(s) = {L(g)|g ∈ I(G);

∃g′ ∈ c(g),M(g′) = s,L(g′) 6= L(g) }.

Then for each species node s ∈ V (S) and each locus l ∈
mother loci(s), consider the set of gene nodes O(s, l) =
N(s, l)∪D(s, l), where N(s, l) contains “original” gene
nodes that map to species s and locus l, descend from
locus l, and have multiple children:

N(s, l) = { g|g ∈ V (G) \ {r(G)}; M(g) = s;

L(g) = l; L(p(g)) = l; |c(g)| > 1 },

and D(s, l) contains “duplication” gene nodes that map
to species s and not locus l but immediately descend
from locus l:

D(s, l) = { g|g ∈ V (G) \ {r(G)}; M(g) = s;

L(g) 6= l; L(p(g)) = l }.

Note that the sets N(s, l) and D(s, l) are disjoint. Now
consider a total order on D(s, l); this order introduces
|D(s, l)|+1 bins in which each node in N(s, l) may occur.
The total order on D(s, l) and the partition of N(s, l)
represent the relative times of duplication nodes as well
as the relative times of original nodes with respect to
duplication nodes. Define <O to be the partial order on
O(s, l), where given two nodes g, g′ ∈ O(s, l), g 6= g′,
then g <O g′ if and only if g precedes g′ in time. Note
that no order is induced on nodes of N(s, l) in the same
bin.

The LCT is subject to the following constraints:
1) If g ∈ L(G), thenM(g) = Le(g).
2) If g ∈ I(G), then for each g′ ∈ c(g),M(g) ≤S M(g′).
3) For each g, g′ ∈ L(G), g 6= g′, if M(g) =M(g′), then
L(g) 6= L(g′).

4) For each l ∈ L, there exists a g ∈ V (G) such that L(g) =
l.

5) For each l ∈ L, there exists exactly one g ∈ V (G) such
that L(g) = l and either g = r(G) or L(p(g)) 6= l.

6) For each s ∈ V (S), each l ∈ mother loci(s), and each
g, g′ ∈ O(s, l), g 6= g′, if g <O g′, then g �G g′.

Constraint 1 asserts that M extends the leaf map Le.
Constraint 2 asserts thatM satisfies the temporal constraints
implied by S. Constraint 3 asserts that extant genes (leaves)
mapped to the same extant species (leaves) belong to
different loci. Constraint 4 asserts that L includes only loci
used by at least one gene. Constraint 5 asserts that every
locus is created only once. Constraint 6 asserts thatO satisfies
the temporal constraints implied by G.

Because the locus set L is defined by the locus map L, we
often represent an LCT using the reduced tuple 〈M,L,O〉.

An internal gene node g ∈ I(G) is said to be a speciation
node with respect to species map M if for each child g′ ∈
c(g),M(g) 6= M(g′). Given a map M, some nodes may
initially be hidden in a gene tree due to losses and deep
coalescence. Such “implied speciation nodes” are added to
each gene branch that spans multiple branches of the species
tree (Supplemental Section S1.1). Note that the species map
M is defined first, then implied speciation nodes are added
as required, and finally the locus map L and partial order
O are defined on the nodes of the gene tree, which now
includes any implied speciation nodes.

Next, we define some useful sets. Given a species node
s ∈ V (S) and a species mapM, let nodes(s) denote the set
of gene nodes mapped to s; bottoms(s) denote the set of
speciation nodes mapped to s; and tops(s) = bottoms(p(s))
if s 6= r(S) and tops(s) = {r(G)} otherwise. (We can think
of bottoms(s) and tops(s) as the set of gene nodes at the
“bottom” or “top” of species branch e(s), respectively.)

The LCT allows for several evolutionary events (Fig. 1D).
A speciation event corresponds to a locus present at the
bottom of a species branch continuing at the same locus in at
least one child species. As a speciation in the LCT reflects a
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speciation in the species tree, it is considered a null event. A
duplication event corresponds to the creation of a new locus
along a gene branch; such a gene branch is said to have a
duplication. A loss event corresponds to a locus present at
either the top of a species branch, or created via a duplication
within the species branch, being no longer present at the
bottom of the species branch. A coalescence event is, in fact, a
deep coalescence or failure to coalesce, which results in “extra”
branches (lineages) in a species and locus. Two gene lineages
may fail to coalesce at speciations or duplications, resulting
in extra lineages at the speciation or duplication, respectively.
Note that the speciation, duplication, loss, and coalescence at
speciation events depend only onM andLwhile coalescence
at duplication events also depend on O (Fig. 1E). Formal
definitions are provided in Supplemental Section S1.2.

Let CD , CL, CC , and CK denote the positive real-number
costs associated with duplication, loss, and coalescence
at speciations and duplications, respectively. The cost of
reconciling G and S according to LCT 〈M,L,O〉 is defined
as follows:

Definition 2.2 (Reconciliation Cost). Given G, S, Le, CD,
CL, CC , and CK , the reconciliation cost of an LCT 〈M,L,O〉
for 〈G,S, Le〉with d duplications, ` loss events, c coalescence
at speciation events, and k coalescence at duplication events
is R〈M,L,O〉 = d · CD + ` · CL + c · CC + k · CK .

Our goal is to find a most parsimonious reconciliation.
Formally:

Problem 2.1 (Most Parsimonious Reconciliation (MPR) Prob-
lem). Given G, S, Le, CD , CL, CC , and CK , find an LCT for
〈G,S, Le〉 with minimum reconciliation cost.

Note that the solution to Problem 2.1 is not necessarily unique
Next, we define optimality of LCT components.

Definition 2.3 (Optimal LCT Components). A species map
M∗ is said to be optimal if there exists a locus map L
and a partial order O such that 〈M∗,L,O〉 solves the MPR
problem. Given a species map M, a locus map L∗ is said
to be optimal if there exists a partial order O such that
〈M,L∗,O〉 solves the MPR problem. Given a species map
M and locus map L, a partial order O∗ is said to be optimal
if 〈M,L,O∗〉 solves the MPR problem.

Note that neither the given species map nor locus map need
be optimal. Henceforth, an MPR refers to an LCT that solves
the MPR problem. An MPR must satisfy certain properties.

Theorem 2.1 (Optimal Species Maps). The species mapM∗ is
optimal if and only ifM∗ is the lowest common ancestor (LCA)
map.

Theorem 2.2 (Optimal Locus Maps). Given a species mapM,
if the locus map L∗ is optimal, then1:
• Each gene branch e(g) ∈ E(G) has at most one duplication.2
• For each species node s ∈ V (S) and each gene node g ∈
nodes(s) \ bottoms(s) internal to the species branch, if g′

1. Previously, this theorem also stated that “The number of loci is
at most one more than the minimum number of inferred duplications
under the duplication-loss model using the same duplication and loss
cost.” The accompanying proof was flawed, so this property is no longer
included.

2. This constraint follows from the definition of the LCT and duplica-
tions in the LCT.

and g′′ denote the children of g, then at most one of the two
children branches e(g′) or e(g′′) has a duplication.

Theorem 2.3 (Optimal Partial Orders). Given a species map
M and locus map L, if the partial order O∗ is optimal, then
for each species s ∈ V (S) and each locus l ∈ mother loci(s),
duplications are placed as early in the species branch as possible.
That is, for each original node g ∈ N(s, l) and each duplication
node d ∈ D(s, l), g <O∗ d if and only if g ≤G d.

Proofs are provided in Supplemental Section S2.3

2.3 DLCpar Algorithm

We now outline the basic steps of the DLCpar algorithm
(Fig. 2, [44]) for solving the MPR problem. The formal pseudo-
code is provided in Supplemental Section S3.

From Theorem 2.1, DLCpar setsM∗ to be the LCA map,
then uses this map to decompose the gene tree into disjoint
subtrees that evolve within each species branch (Fig. 2A).

For each species node s ∈ V (S), let a sub-locus map and
sub-partial order be a locus map and partial order defined
over genes nodes in the species branch e(s), that is, over
g ∈ tops(s) ∪ nodes(s), and let a tile consist of a particular
sub-locus map and sub-partial order with associated recon-
ciliation cost. To determine an optimal locus map and partial
order, DLCpar constructs sets of tiles for each species, then
uses dynamic programming to combine tiles so that loci of
nodes shared across species match. In the remainder of this
section, we provide more details on this process.

For each species via pre-order traversal of the species
tree, DLCpar constructs a set of tiles by first considering
all sub-locus maps that satisfy Theorem 2.2 and, if a leaf
species is being considered, that satisfy LCT Constraint 3.
As an example, in the root species, which contains a (single)
subtree of the gene tree, DLCpar assigns the root of the
subtree to an arbitrary locus, then considers all possible
placements of duplications along branches of the subtree,
subject to the aforementioned constraints (Fig. 2B). Each
combination of duplication placements yields a sub-locus
map. For each sub-locus map, DLCpar considers all sub-
partial orders that satisfy Theorem 2.3, then chooses one with
minimum number of coalescence at duplication events (as
other event types do not depend on the sub-partial order).
For the tile consisting of the sub-locus map and chosen sub-
partial order, DLCpar finds the set of events within the tile
and computes the reconciliation cost.

Next, DLCpar considers the problem of propagating
locus assignments across species. For each sub-locus map,
DLCpar computes top loci and bottom loci, which are compact
representations of the locus assignments at tops(s) and
bottoms(s). To construct these representations, the algorithm
arbitrarily (but consistently) orders tops(s) (or bottoms(s)),
assigns the first node to an arbitrary “locus 1”, then assigns
each subsequent node either to one of the previous loci, if the

3. Previously, these theorems were poorly worded in that it was
unclear if the conditions were necessary or sufficient. Furthermore, the
proofs showed that there exists an optimal component that satisfies these
properties. In this work, the proofs have been extended to show that
every optimal component satisfies these properties. This modification
guarantees that the DLCpar algorithm does not ignore any potentially
optimal species maps, locus maps, or partial orders, and thus, is not
under-counting the number of optimal reconciliations.
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Fig. 2. The DLCpar algorithm. See text for an explanation of the algorithm. (A) The optimal species map. (B) Tiles for the root species, each
consisting of a sub-locus map with an optimal sub-partial order and reconciliation cost. (In this example, event counts rather than the reconciliation
cost is shown, and each event has equal cost.) Each sub-locus map may have multiple optimal sub-partial orders. (C) Top and bottom loci for each
sub-locus map, and for each unique pair of top and bottom loci, the optimal underlying sub-locus maps. (D) Tiles for the remaining species via
pre-order traversal of the species tree. (E) The dynamic programming table for assigning optimal top and bottom loci for each species. The table is
filled via post-order traversal of the species tree (arrows), and each cell contains the minimum total cost along all descendant species branches. For
top loci, colors indicate which bottom loci (circles) and which sub-locus map (squares with colors corresponding to parts C and D) are used. At the
species root, there is only only possible assignment of top loci, and traceback allows assignment of top and bottom loci for all species (boxed). These
loci assignments are used to determine optimal underlying sub-locus maps and sub-partial orders. (F ) The number of equally optimal reconciliations
for each assignment of top and bottom loci. (G) A most parsimonious reconciliation (sampled uniformly at random), along with the number of equally
optimal reconciliations. [Figure and caption adapted with permission from Wu et al. [44]. Gray boxes indicate new content.]

node is mapped to the same locus as a previous node, or to
the next available locus. The relative locus pair for a sub-locus
map is a tuple (lt, lb) with top loci lt and bottom loci lb.
DLCpar computes the relative locus pair for each sub-locus
map, then, for each (lt, lb), records an underlying sub-locus
map (that induces (lt, lb)) with minimum reconciliation cost,
denoted as Cs(lt, lb) (Fig. 2C). Note that by traversing the
species tree in pre-order, DLCpar ensures that the set of top
loci for any non-root species is determined by the set of
bottom loci of its parent species, and the set of bottom loci
for any species is in turn determined by the sets of top loci
and enumerated sub-locus maps for the species (Fig. 2D).

Once all tiles are constructed for all species, DLCpar uses
dynamic programming to determine an optimal assignment
of top loci and bottom loci for each species (Fig. 2E).
The algorithm constructs two tables, F b and F t, where
the entries F b(s, l) and F t(s, l) are the minimum costs
for assigning bottom loci l to bottoms(s) or top loci l to
tops(s), respectively, and these costs include events along
all descendant species branches. These tables are completed
via post-order traversal of the species tree, and for each
species, F b then F t is filled. To compute F b(s, l), there are
two cases to consider. If s ∈ L(G), then when constructing
tiles, DLCpar has already required that bottom loci for extant
species be distinct; therefore, the only possible assignment
of bottom loci is valid. Otherwise, assigning bottom loci to s

requires assigning top loci to children species s′ and s′′.

F b(s, l) =

{
0, if s ∈ L(G)

F t(s′, l) + F t(s′′, l), otherwise

To compute F t(s, l), DLCpar must combine a bottom loci
with a relative locus pair that has the same bottom loci, then
choose a bottom loci with minimum cost.

F t(s, l) = min
lb:(l,lb)∈RLP(s)

{
F b(s, lb) + Cs(l, lb)

}
where RLP(s) denotes the set of relative locus pairs
for species s. Once the species root is reached, since
tops(r(S)) = {r(G)}, there is only one possible assignment
of top loci. By using standard dynamic programming “book-
keeping”, DLCpar then traces back through these tables via
a pre-order traversal of the species tree to assign optimal top
and bottom loci for each species.

Finally, for each species, DLCpar looks up the optimal
sub-locus map for the chosen relative locus pair, and looks up
the optimal sub-partial order for the chosen sub-locus map.
These components, together with the the optimal species
map, constitute a most parsimonious reconciliation (Fig. 2G).

3 MULTIPLE OPTIMAL RECONCILIATIONS

In this section, we show that the problems of computing
a single optimal reconciliation, counting the number of
optimal reconciliations, and sampling from the set of optimal
reconciliations uniformly at random are fixed-parameter



6

tractable by extending the DLCpar algorithm and analyzing
its running time.

3.1 Computing the Number of Optimal Reconciliations
Before we turn to the problem of counting optimal recon-
ciliations, we introduce a corollary of Theorem 2.3. Given
a species map M and locus map L, for each species node
s ∈ V (S) and each locus l ∈ mother loci(s), let a local order
be a partial order over O(s, l) and a duplication order be a
total order over D(s, l).4 A local order (duplication order)
is said to be optimal if it induces the minimum number of
coalescence at duplication events (as again, other event types
do not depend on the partial order).

Corollary (Number of Optimal Partial Orders for a Single
Locus). Given a species mapM and locus map L, for each species
node s ∈ V (S) and each locus l ∈ mother loci(s), the number
of optimal local orders is equal to the number of optimal duplication
orders.

The proof is provided in Supplemental Section S2. As before,
neither the given species map nor locus map need be optimal.

We now describe how to count optimal reconciliations.
In the DLCpar algorithm, there are three places where we
might choose from multiple optimal options and thus need
to keep track of the number of solutions:
C1. For each sub-locus map for a species, there may exist

multiple optimal sub-partial orders.
C2. For each relative locus pair for a species, there may exist

multiple optimal sub-locus maps.
C3. When using dynamic programming to determine an

optimal assignment of top and bottom loci for each
species, there may exist multiple optimal assignments
and multiple optimal paths.

Next, we describe how to count each of these sources of
multiplicity.

First, for each sub-locus map for a species, we consider
each locus l ∈ mother loci(s) separately. Via the above
corollary, for this locus, the number of optimal local orders
is equal to the number of optimal duplication orders. When
considering partial orders, DLCpar constructs all sets of
duplication orders , so it is easy to count the subset that
is optimal. Then, as each locus evolves independently, the
number of optimal sub-partial orders for the sub-locus map
is the product of the number of duplication orders for each
locus (Fig. 2B,D, gray highlight). To keep track of these
counts, for a species s and a set L(s) of locus maps for that
species, let N s,O : L(s) → N+ map each locus map to the
number of optimal partial orders for that locus map.

Second, when DLCpar propagates locus assignments
across species, it computes a relative locus pair for each
locus map. For each relative locus pair (lt, lb), it is therefore
straightforward to count the subset X of underlying sub-
locus maps with minimum reconciliation cost. Then, because
each of these underlying sub-locus maps could have multiple
optimal sub-partial orders, we sum the number of optimal
sub-partial orders for each sub-locus map in X (Fig. 2C,D,
gray highlight). Formally, for a species s and a set RLP(s) of

4. The terms local partial order and local duplication order are more
precise, but for simplicity, we will understand that a local order is partial
and a duplication order is local.

relative locus pairs for that species, let N s,L : RLP(s)→ N+

map each relative locus pair to the number of optimal
reconciliations (consisting of a sub-locus map and sub-partial
order) for that relative locus pair. Then,

N s,L(lt, lb) =
∑
L̂∈X

N s,O(L̂).

Third, we must account for multiple optimal assignments
and paths during the dynamic programming step (Fig. 2F).
During this step, DLCpar now constructs two additional
tables, N b and N t that are analogous to F b and F t. That is,
the entries N b(s, l) and N t(s, l) track the number of optimal
reconciliations that assign bottom loci b to bottoms(s) or top
loci l to tops(s), respectively, where again, the reconciliations
include events along all descendant species branches. To
compute N b(s, l), there are again two cases to consider. If s ∈
L(S), then there is only one valid assignment of bottom loci.
Otherwise, DLCpar can use any sub-solution that assigns l
as top loci of one child species s′ and any sub-solution that
assigns l as top loci of the other child species s′′.

N b(s, l) =

{
1, if s ∈ L(G)

N t(s′, l)×N t(s,′′ , l), otherwise

To compute N t(s, l), recall that DLCpar combines a bottom
loci with a relative locus pair that has the same bottom loci.
So for a single bottom loci, we multiply the corresponding
counts. We must then sum over the set Y of bottom loci with
minimum cost.

N t(s, l) =
∑
l̂b∈Y

{
N b(s, l̂b)×N s,L(l, l̂b)

}
Finally, at the species root, there is only one possible assign-
ment l of top loci. The number of optimal reconciliations is,
therefore, N t(r(S), l).

3.2 Sampling Optimal Reconciliations Uniformly at
Random
Now that we have a process for counting the number of
equally optimal reconciliations, we turn to the problem of
uniform sampling among the multiple optima. Our method
for uniform sampling parallels our method for counting
optima. In particular, we consider each point in the algorithm
where we choose from multiple optimal options. Instead
of using random sampling, we now consider a weighted
sampling of these choices:
S1. For each sub-locus map for a species, there may exist

multiple optimal sub-partial orders. For each locus, each
local order is defined by its duplication order, and there
is no choice for the node partition. Therefore, we first
use uniform weights to select from the set of optimal
local orders for each locus. Then, as each locus evolves
independently, we combine the selected local orders for
each locus to arrive at an optimal sub-partial order for
the sub-locus map.

S2. For each relative locus pair for a species, there may
exist multiple optimal sub-locus maps. We weight each
sub-locus map according to the number of associated
optimal sub-partial orders. Formally, for a relative locus
pair (lt, lb), a locus map L̂ that induces (lt, lb) is sampled
with probability N s,O(L̂)

N s,L(lt,lb)
.
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S3. When using dynamic programming to determine an
optimal assignment of top and bottom loci for each
species, there may exist multiple optimal assignments
and multiple optimal paths. To be precise, whereas
counting the number of optimal reconciliations resulted
in additional dynamic programming tables, sampling
a reconciliation results in changes during traceback
through the tables. When assigning optimal bottom
loci, the bottom loci are either known for extant species
or set to the top loci of children species. Thus, there
is no selection to be made. However, when assigning
top loci, there may exist multiple optimal bottom loci.
The weights for each bottom loci must account for the
number of solutions for assigning bottom loci and the
number of solutions for the locus map. Formally, for
top loci l, a bottom loci l̂b is sampled with probability
Nb(s,l̂b)×N s,L(l,l̂b)

Nt(s,l) .

3.3 Correctness
The proof of correctness of the DLCpar algorithm, including
the augmentations described above, is straightforward. By
Theorem 2.1, the species map is optimal. Then, when
constructing tiles and propagating locus assignments using
relative locus pairs, DLCpar enumerates all possible sub-
locus maps and sub-partial orders. For the augmentations,
the number of solutions associated with each sub-locus map
or each relative locus pair must be exactly the sum over sub-
partial orders and sub-locus maps, respectively. Additionally,
each sub-partial order or sub-locus map is sampled at
random based on its probability mass. Likewise, when
determining an optimal assignment of top loci and bottom
loci for each species, DLCpar calculates the minimum cost
of each sub-solution, combines sub-solutions over disjoint
parts of the subtree, and samples each sub-solution with
probability equal to its probability mass.

3.4 Time Complexity
Let m denote the number of leaves in the species tree, n
denote the number of leaves in the gene tree, and c denote
the maximum number of speciation nodes at any species
branch. In this section, we show that the MPR problem
is fixed-parameter tractable by showing that the running
time of DLCpar is O(m(f(c) + n)) for some function f that
depends only on c.5 The following analysis uses loose upper-
bounds for f(c); the value of f(c) can be improved with
more detailed analysis.

Lemma 3.1. Given a species s ∈ V (S) and a sub-locus map and
sub-partial order, the reconciliation cost for the species branch e(s)
can be computed in time O(c2).

Proof. First, note that the subtrees of the gene tree that exist
within e(s) form a forest F that contains at most c roots and
c leaves. Thus, F contains O(c) additional gene tree nodes
and O(c) gene tree branches.

Duplications can be counted in O(c) time by simply
traversing F . Losses can be counted in O(c) time by first
traversing F to collect the starting nodes of each locus in

5. Big O is denoted using bold-face O to differentiate it from O in the
set O(s, l).

e(s). Then, from the set of starting nodes of each locus, the
gene tree subgraph is traversed downwards to determine if
there is a path to a bottom node g ∈ bottoms(s) that does
not pass through a duplication. If there is no such path, that
locus is lost.

Coalescences at speciation can be counted in O(c) time
by counting the number of top nodes g ∈ tops(s) that are
on the same relative locus. For coalescences at duplication,
F is traversed in O(c) time to construct the sets O(s, l) and
the set of starting nodes of each locus. Then, for each locus
l ∈ mother loci(s) and each duplication node d ∈ D(s, l) ⊆
O(s, l), the number of branches contemporaneous with d is
counted by processing O(s, l) in the order specified by the
sub-partial order. Since there can be O(c) duplications across
all mother loci, and each scan over O(s, l) takes O(c) time,
the total cost is O(c2).

Theorem 3.2. The worst-case running time of the DLCpar
algorithm is O(m(f(c) + n)) where f(c) = Bc2

2c(2c)!c2 and
Bc denotes the cth Bell number.

Proof. We give an upper-bound on the running time of
DLCpar by considering the separate parts of the algorithm.
First, the LCA mapping between the gene tree and species
tree can be computed in O(mn) time [46].

Next, DLCpar constructs a set of tiles for each species,
which consists of a sub-locus map with an associated optimal
sub-partial order and reconciliation cost. For a species s, since
there are at most c nodes in tops(s), the number of distinct
top loci is bounded by Bc, the cth Bell number. Because
there are at most c nodes in bottoms(s), the subtrees of
the gene tree that exist within e(s) form a forest with at
most c leaves, resulting in at most c − 1 internal nodes
and at most 2c branches within e(s). In an MPR, at most
one duplication can be placed on each gene branch and an
optimal partial order places duplications as early as possible,
resulting in at most 22c distinct duplication placements and
at most (2c)! distinct orderings. Thus, the total number of
sub-locus maps with associated sub-partial orders is bounded
by O(Bc2

2c(2c)!). Since permutations and partitions can be
generated in-place in amortized constant time [16], [25], and
each sub-locus map with associated sub-partial order has
size O(c), each sub-locus map and sub-partial order can be
explicitly enumerated in amortized time O(c), and then, by
Lemma 3.1, the reconciliation cost can be computed in time
O(c2). Thus, this step of the algorithm is bounded by time
O(Bc2

2c(2c)!c2).
Next, DLCpar computes the relative locus pair and

reconciliation cost for each sub-locus map. Since there are
at most c nodes in tops(s) and c nodes in bottoms(s), the
relative locus pair for a locus map can be computed in O(c)
time, but this time is subsumed by the time to compute
the reconciliation cost. Then, the algorithm constructs tables
Cs and N s,L to map each relative locus pair to its optimal
reconciliation cost and number of sub-locus maps with that
cost. These Bc × Bc tables are filled by scanning the list
of sub-locus maps with associated partial orders and thus
takes time O(Bc2

2c(2c)!). Note that the O(Bc
2) time to

initialize the table is subsumed by the time to scan the list
since Bc ∈ O(c!). Thus, the cost of enumerating sub-locus
maps and sub-partial orders, computing their reconciliation
costs, and storing them in tables takes time O(Bc2

2c(2c)!c2),
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and repeating this process for each of m species takes time
O(m(Bc2

2c(2c)!c2)).
Each dynamic programming table tracks the assignment

of top and bottom loci for each species and thus has
dimensions m×Bc. For each entry F b(s, l) or N b(s, l), the
value is either known in the base case (s ∈ L(G)) or uses
the values (cost or number of solutions) from assigning l
as top loci for the two children branches. For each entry
F t(s, l) or N t(s, l), the algorithm considers each of the
at most Bc bottom loci assignments and, for each such
assignment, looks up the cost or number of solutions in other
tables. Thus, each entry can be computed in time O(Bc).
Altogether, the running time of the dynamic programming
step is bounded by O(mBc

2), which is subsumed by the
previous O(m(Bc2

2c(2c)!c2)) term.
Putting these components together, the total running time

of DLCpar is O(m(Bc2
2c(2c)!c2 + n)).

This theorem implies that the MPR problem is fixed-
parameter tractable, where the parameter, c, is the maximum
number of speciation nodes at any species branch in the
LCA mapping. While f(c) grows exponentially with c, the
value of c is induced by the LCA mapping, with c = 1 if the
two trees are congruent, and c = n in the worst case (when
the entire gene tree is mapped within a single species). In
general, c is small for relatively congruent trees and large for
relatively incongruent trees.

4 RESULTS

To investigate the solution space of DLC reconciliations,
we used a biological data set of 5351 gene families across
16 fungal genomes [4] that has been used to evaluate
numerous phylogenetic algorithms [32], [33], [41], [44]. All
gene families contain at least four genes; thus, multiple gene
trees and reconciliations can be inferred for each family.
We reconstructed gene trees using TreeFix [43] then ran
DLCpar with the default event costs (duplication and loss
cost of 1, coalescence cost of 0.5). For each gene family,
we determined the number of optimal reconciliations, and
for gene families with multiple optima, we also uniformly

sampled 100 optimal reconciliations. Some gene families
were very large or highly incongruent to the species tree
and thus not able to be reconciled (0.2% of gene families are
omitted from our analysis).

4.1 Number of Optimal Reconciliations

The majority (66.9%) of gene families have a unique optimal
reconciliation. This large percentage can be attributed to
three factors. One, 24.5% of all gene trees are congruent to
the species tree, and so there exists a single unique optimal
reconciliation that requires no events. Two, an additional
32.3% of gene families have at most one gene per species.
Their corresponding reconciliations require no duplications,
and without duplications, only one locus map (with a trivial
partial order) is optimal. Three, the remaining families with
a single reconciliation occur when the gene tree is reconciled
using one duplication. With one duplication, there can exist
two optimal locus maps (each with one optimal partial order)
that differ only in that lineages labeled with the mother
locus and lineages with the daughter locus are interchanged.
However, for these gene trees, only one of these locus maps is
valid due to the requirement of complete coalescence within
the daughter locus; interchanging the mother and daughter
lineages would result in incomplete coalescence within the
daughter locus.

Despite the prevalence of families with a unique optimal
reconciliation, many gene families have multiple optimal rec-
onciliations. We found that 33.1% of families have multiple
optima, with 4.8% (1.9%) of families with more than 10 (100)
optima and one family with more than 7.9 million optima
(Fig. 3A). Furthermore, the number of optimal reconciliations
tends to increase exponentially with gene tree size (Fig. 3B),
making it impractical to enumerate all optimal reconciliations
for larger datasets.

We also observed that when a gene family has multiple
optimal reconciliations, the number of optima tends to be a
power of two. This property is true for 98.2% of gene families
with multiple optima. Again, recall that each duplication
in a species branch can yield two optimal locus maps
that differ only in the lineages labeled with the mother
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and daughter locus. When there is complete coalescence
of lineages within both the mother and daughter locus,
either labeling is allowed. Thus, with d such duplications,
there exists 2d distinct optimal locus maps with associated
partial orders. (In contrast, as discussed earlier, when there is
incomplete coalescence of lineages within the mother locus,
then interchanging the mother and daughter lineages is
invalid, resulting in less than 2d optima.)

Interestingly, our results suggest that the space of MPRs
under the DLC model can both differ from and be similar to
the space of MPRs under the DTL model. A case study of
4735 gene trees and 100 (predominantly prokaryotic) species
from the Tree of Life [9] found that only 17% of the gene
trees have a unique optimal reconciliation and more than
50% have more than 100 optima, but similarly, the number
of optima increases exponentially with gene tree size [2].
Some of the observed differences can likely be attributed to
the DTL study using a larger data set. Whereas our study
considered 16 species, with median and mean leaf set sizes
for gene trees of 16 and 15.4, the DTL study considered 100
species, with median and mean leaf set sizes of 18 and 35.1.
However, the similarity in median gene tree size suggests
that the space of MPRs under the DLC model may be smaller,
and thus a single MPR more representative, even for data
sets of similar size.

4.2 Event Support across Multiple Samples

Despite the presence of multiple optimal reconciliations, it
may be that the reconciliations are similar in the sense that
the underlying locus tree topology and events are largely the
same. For gene families with multiple optimal reconciliations,
we addressed this question of similarity by sampling 100
optimal reconciliations for each gene tree, extracting the locus
tree topology and events for each sampled reconciliation, and
computing the support of the locus tree topology and events
for a plurality reconciliation.

We found that the locus tree topology and events are well-
supported. 91.8% of gene families have a locus tree topology
that is fully supported across the 100 samples. Additionally,
99.0% of locus tree branches are fully supported, and the
average support across all locus tree branches is 99.4%. For
the 29,551 speciations, 4053 duplications, and 2266 losses,
99.4%, 97.4%, and 97.2% of events are fully supported, with
average supports of 99.7%, 98.7%, and 98.6%, respectively.
(We did not compute support for coalescences because, in
most applications, deep coalescences are “nuisance” events
that are irrelevant to the user.) These results imply that the
locus tree and events, and consequently orthologs and par-
alogs, inferred using DLCpar are likely to be representative
of MPR space. Interestingly, similar results, though with
weaker support values, were found for MPRs under the
Duplication-Transfer-Loss model [2], [35] despite the DLC
and DTL models using different underlying events.

We found that, surprisingly, support for locus tree
branches and events increases with increasing number of
optimal reconciliations (Fig. 4). This result suggests that the
number of MPRs cannot adequately measure the variability
within MPR space. That is, a gene family may have many
MPRs that mostly share the same events, in which case a
single plurality reconciliation may be enough to summarize

the events in MPR space. Or a gene family may have few
MPRs that differ substantially from one another, in which
case it may be necessary to enumerate or sample multiple
solutions.

4.3 Varying Event Costs

A limitation of parsimonious reconciliation approaches is
the need for the user to explicitly set costs for each event.
We studied the effect of using different costs on the MPR
space and found that our results are robust to the cost setting
(Table 1). The most substantial deviation occurs when all
events have equal cost, which yields lower locus tree and
event support. We hypothesize that with equal costs, events
are more “fungible” in the sense that a group of events can
be swapped with another (equally-sized) group of events.

4.4 Runtime

The average (median) runtime for a gene family was 1.89
(0.08) sec to count the number of optima and, for gene
families with multiple optima, 1.47 (0.10) sec to sample 100
reconciliations6. As expected, runtime increases with number
of genes and number of speciation nodes (Figure 5).

5 COMPARISON WITH OTHER MODELS

In this work, we have used the DLCoal model for gene
family evolution; however, other models exist. Vernot et
al. [40] proposed a model for reconciling gene trees with
non-binary species trees under a duplication-loss parsimony
framework while allowing ILS (due to deep coalescence)
at non-binary nodes in the species tree. Stolzer et al. [36]
later extended this model and parsimony method to allow
for transfers as well. Their algorithms are fixed-parameter
tractable when the size of the largest polytomy in the species
tree is fixed. More recently, Chan et al. [5] proposed a model
for reconciling gene trees with binary species trees that allows
for duplications, transfers, losses, and ILS but also penalizes
the degree of ILS (e.g. the number of extra lineages) as well
as ensuring a time-consistent solution (i.e. in which transfers
do not induce contradictory constraints on the relative order
of the internal nodes). Their algorithm for inferring a most
parsimonious reconciliation marks certain internal branches
that can contain ILS, then connects sets of marked branches
into ILS subtrees. Its complexity was also shown to be fixed-
parameter tractable when the size of the largest ILS subtree
is fixed.

A detailed comparison of these models is provided in
Chan et al. [5], which notes that the model of ILS is often the
key difference, and, because each algorithm solves their own
model, direct comparisons may be less informative. Here, we
highlight some differences that advantage and disadvantage
the model used here.
• The DLCoal model is the only one based on the multi-

species coalescent. Duplications and losses start in one
allele and drift to fixation or extinction. In the Vernot-
Stolzer and Chan models, duplications are considered

6. Experiments were performed on 64-core cluster consisting of four
AMD Opteron 6276 CPUs, each with 16 cores at 2.3 GHz, and a total of
512 GB of DDR3-1600 RAM.
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TABLE 1
Impact of Event Costs.

costsa reconciliationsb full supportc average supportd

D L C single sol max sol locus tree branches specs dups losses branches specs dups losses
1 1 1 66.7 8.6b 74.2 96.9 97.0 88.7 86.6 98.5 98.7 93.7 93.9
1 1 0.75 66.7 8.6b 93.8 99.4 99.7 99.2 98.2 99.6 99.9 99.6 99.3
1 1 0.5 66.7 7.9m 91.8 99.0 99.4 97.4 97.2 99.4 99.7 98.7 98.6
1 1 0.25 66.8 8.6b 89.7 98.4 98.9 95.3 97.0 99.1 99.5 97.9 98.5
2 1 0.5 66.7 4.2m 92.1 99.1 99.5 97.7 98.0 99.5 99.8 98.8 99.1

a The costs of duplications, losses and coalescences.
b Percentage of families (out of 5351 families) with a single reconciliation. Maximum number of reconciliations (in billions or millions) across all
families.
c Across 100 sampled reconciliations for gene families with multiple optima, percentage of families with a single locus tree and percentage of locus
tree branches, speciation events, duplication events, and loss events in a plurality optimal reconciliation with full support.
d Across 100 sampled reconciliations for gene families with multiple optima, average support for locus tree branches, speciation events, duplication
events, and loss events in a plurality optimal reconciliation.
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instantaneous, so deep coalescence at duplications is not
allowed. However, DLCoal must observe two incom-
pletely sorted alleles (in the same locus and same species
branch); other models allow for ILS in which one allele
is immediately lost.

• The DLCoal model decouples the effects of the
duplication-loss and multispecies coalescent processes
through the concept of a locus tree, allowing recon-
ciliations under this model to directly track the locus
of genes and therefore to distinguish orthologs and
paralogs. While events are mapped onto the gene tree in
the Vernot-Stolzer and Chan models, simply considering
pairs of genes in the two subtrees of the mapped node
will fail to account for the effects of ILS.

• The DLCoal model allows deep coalescence along any
species branch whereas the Vernot-Stolzer and Chan
models restrict the phenomena to certain parts of the
species tree, in particular, at polytomies in the former
and at marked branches in the latter. In contrast, DLCpar
allows ILS anywhere and is unable to account for the
probability of deep coalescence decreasing with branch
length. It is unclear whether allowing deep coalescence
only within certain species branches would invalidate
Theorems 2.1, 2.2, and 2.3 on properties of MPRs under
the DLCoal model.

• The Stolzer and Chan models allow transfers. While
it would be straightforward to unify the duplication-
transfer-loss and multispecies coalescent model (a
“DTLCoal” model), the specifics of an associated reconcil-
iation algorithm are unclear. A probabilistic framework
for DTL reconciliation [38] could be substituted for the
embedded DL reconciliation component in DLCoalRe-
con, but such an algorithm would require estimates
of several additional parameters such as population
sizes, species tree branch lengths, and duplication,
transfer, and loss rates and likely be prohibitively slow
in practice. A key efficiency of the DLCpar algorithm
in the parsimony framework is that the optimal species
map is the LCA map. This theorem almost certainly does
not hold when transfers are included.

In previous work, we used simulated data sets to compare
the performance of DLCpar, NOTUNG (which implements
reconciliation under Vernot-Stolzer model), and LCA (the

classic method for inferring MPRs under a duplication-loss
only model or a coalescent-only model). Events inferred by
DLCpar had both higher precision and sensitivity compared
to LCA. In contrast, while we found that NOTUNG correctly
identifies spurious duplications due to ILS, the sensitivity
of inferred duplications was similar to that of the LCA, and
loss sensitivity and precision were often worse than that
of LCA. To our knowledge, no implementation exists for
reconciliation under the Chan model.

6 DISCUSSION

In this work, we have presented new algorithms for under-
standing the space of maximum parsimony reconciliations
under the DLC model. Specifically, we have shown how to
compute the size of MPR space and to sample from this
space uniformly at random. Our algorithms are efficient in
practice, with runtime polynomial in the size of the species
and gene tree when the number of genes that map to any
given species is fixed. Our analysis of a biological data set
provides some key insights into MPR space. In particular, we
show the majority of gene families have a unique optimal
reconciliation, and for gene families with multiple optima,
events in a plurality reconciliation tend to be well-supported.
These results suggest that reconciliations returned by DLCpar
are likely to be representative of MPR space.

Our work represents a first step towards understanding
MPR space, and there are several directions for future work,
especially for gene trees with multiple optima. For example,
while we have summarized MPR space through sampling,
several other approaches are possible. For MPRs under the
DTL model, methods exist not only for sampling [2] but
also for compactly representing the space of all MPRs [35],
computing a medoid MPR [22], finding a set of reconciliations
that collectively cover the most frequently occurring events
in MPR space [20], implicitly clustering MPR space [26], and
computing the diameter of MPR space [15]. We expect that it
may be possible to similarly explore MPR space under the
DLC model.
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[14] Górecki, P., Tiuryn, J.: Dls-trees: A model of evolutionary scenarios.
Theoret Comput Sci 359(1–3), 378–399 (2006)

[15] Haack, J., Zupke, E., Ramirez, A., Wu, Y.C., Libeskind-Hadas, R.:
Computing the diameter of the space of maximum parsimony
reconciliations in the duplication-transfer-loss model. In: 16th Asia
Pacific Bioinformatics Conference (APBC 2018). Yokohama, Japan
(2018)

[16] Itai, A.: Generating permutations and combinations in lexicograph-
ical order. J Braz Comput Soc 7, 65 – 68 (2001)
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